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Concrete: Overview

• Concrete: The principal material for 
construction of (nearly all) infrastructure

• Concrete = Portland cement + water + sand + 
stones + chemicals (to regulate properties)

• Production-and-use: 40 billion tons/year

– Employs 10 million Americans

– Creates $1.3 trillion worth of engineered 
systems

• 2050 projections

– Global population: 10 billion

– (Sub)urbanites: 6.6 billion

– Rise of >50 megacities

– Concrete production: ~60 billion tons/year
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Concrete: The ugly

• The carbon-footprint problem

• Limestone (CaCO3) is needed to 
produce cement: 70%mass

– CO2 released at ~800 ℃

• Clinkering temperature: 1450℃

– Achieved using fossil fuels

– Switching to electricity doesn’t 
help (68% of electricity is 
generated from fossil fuels)

• 0.85 tons of CO2 emitted for every 
ton of cement produced

• Cement production: 8% of all 
anthropogenic CO2 emissions
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Using supplementary cementitious materials

• Use supplementary cementitious 
materials (SCMs) to partially 
replace cement in concrete

– Coal fly ash; slags; waste glass

– Geological materials (e.g., clay)

• SCMs are not as reactive as 
cement: Cannot replace >50%

• Feature substantial batch-to-batch 
variations in composition

• Affect chemical reactions (cement 
hydration); microstructural 
evolution; property development 
in unpredictable ways. 

Snellings, RILEM Tech. Report 2016

Fly ash-1Fly Ash-2

Lapeyre et al., Sci. Reports 2021
Cook et al. Mat. & Des. 2021
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Why model hydration kinetics?

• Apriori prediction of hydration kinetics 
(calorimetry profile) is very useful

• If we know what % of cement has 
reacted, thermodynamic models 
can predict phase assemblage

• More heat = greater extent of 
cement hydration = more products 
= less porosity; more solid-to-solid 
phase connectivity; more strength

• Cumulative heat is linked to properties

– strength; set time; rheology; etc.

• If hydration can be predicted, 
performance can be estimated

• Useful for cement design, mixture 
proportioning, etc.

Kumar et al. Cem. Conc. Compos. 2013 
Meng et al. Cem. Conc. Compos. 2019
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Can we use theory-based models?
• Phase boundary nucleation & 

growth (N&G)

– Equation captures the underlying 
mechanisms quite well

– Allow product to nucleate and grow 
on SCM particle surfaces

• Excellent reproduction of 
experimental data

• Need to guess

– Effective surface area of SCM

– Nucleation density of the product

– Rate of the growth of the product 
with respect to time

• a priori predictions are not 
possible

Cement

SCM

C-S-H (single product)

Cement + SCM

Measured

N&G model

Modified N&G model

Lapeyre et al., J. Am. Cer. Soc. 2019 and 2018; Cook et al. J. Am. Cer. Soc. 2020; Meng et al. J. 
Phys. Chem. C. 2016; Hernandez et al. ACS Omega 2021; Kumar et al. J. Am. Cer. Soc. 2016
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Supervised machine learning

• Machine learning (ML) is a form of artificial 
intelligence: unsupervised and supervised

• Supervised ML model is first trained using a 
database

• The ML model develops patterns, input-output 
correlations in the data

– Correlations may or may not be known from theory

• Once trained, the ML model can leverage input-
output correlations to predict in new data-
domains

• In the case of cement pastes/concretes

– Training: ML model learns correlations between inputs 
(physiochemical properties of precursors) and output 
(heat evolution; elastic modulus; strength; etc.)

– Testing: Predicts properties (heat evolution) of new 
pastes/concretes, using their mix design as input

Characterize Physical and Chemical 

Properties of Precursors 

Make Concrete/Paste/Mortars

Evaluate Properties

Prepare a comprehensive database

Train the Machine Learning model

Database

Inputs Outputs

PSD of precursors Modulus of Elasticity

Composition of 

precursors 

Compressive Strength

Mixing procedure Slump Flow Rate

Curing condition Heat Evolution

Finalize the model’s architecture

Predict properties of new systems

Optimize mixture design of systems
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Database used for machine learning

• Training: hundreds of unique pastes

– Plain, binary, and ternary pastes

• Cement: Commercial and synthetic

• SCMs

– Different types: limestone; quartz; 
calcined clay; silica fume; fly ash; etc.

– 0-to-60%mass cement replacement

• Inputs: Physiochemical properties 
(composition, PSD) of pastes at t = 0 h 

• Outputs: heat flow rate with respect 
to time

• Blind-testing: Pastes, with new PSDs 
and replacement levels of SCMs;  
different cement compositions

Input: PSDs, composition, and contents 

of cement and SCMs; & water content

Output: Time-dependent heat evolution
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Machine learning: Results

• Good prediction performance in 
blind tests

• a priori predictions of hydration 
kinetics in complex systems, e.g., 
pastes with 2 SCMs

• No free parameters; just need 
simple inputs

– Composition and fineness of 
materials; mix proportion

• Some predictions were not great

– Reason: Limited database; 
inadequate training

– Fix: Expand the database 
Lapeyre et al., Sci. Reports 2020; Cook et al. Mat. & Des. 2021; Han et al. Front. Mat. 2022; 
Cook et al. J. Mat. Civ. Eng. 2019; Han et al. Const. Build. Mat. 2020; Han et al. Cem. Concr. 

Res. 2023; Bhat et al. Const. Build. Mat. 2022
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Improving prediction performance

• Best approach: train the model 
with a larger database

• Second-best approach: simplify the 
database

• We use data-distillation 
approaches

– Segmentation

– Fast Fourier transformation (FFT)

– ML guided theory-based model

• Significant improvement in 
prediction performance

• Faster computations 

Han et al. Front. Mat. 2022
Bhat et al. Const. Build. Mat. 2022 
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Segmentation 

• Segmentation technique divides the 
heat evolution profiles into three 
segments.

• Hydration behaviors in the same 
segments are similar. 

• Three segments: 0-4; 5-24; and 25+ 
hours.

• ML model integrated segmentation 
technique produce superior predictions 
to standalone ML models. 

• Limitations: Hard to predict high sulfur 
cement 
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Fast Fourier transform

•Fourier transform converts a complex 
waveform to a simpler format

•Fourier transform reduced the degree 
of freedom of heat evolution profiles

•ML model predicted fewer data points, 
which save computational resources

•ML integrated with Fourier transform 
produced superior predictions to 
standalone ML

•Limitations: May violate material laws

ACI Convention, San Francisco, April 2nd, 2023

Han et al. Frontiers 2022
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Nucleation and growth model

• Phase boundary nucleation and growth 
models require hydrate’s growth rate (Gout) 
to reproduce heat flow profiles

• Gout profile showed simpler structure and 
trend

• ML optimized parameters for pBNG model, 
which allowed it to reproduce the heat flow 
rate profiles

• ML integrated with pBNG model produced 
superior predictions to standalone ML

• Nucleation and growth model regulate final 
outputs to avoid violation of material laws. 
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Other applications of machine learning

• Combine with game theory to 
develop simple, closed-form 
analytical models

– (1) Quantify “importance” of each 
input parameter

– (2) Construct a function using only 
“consequential” parameters

– (3) Optimize the coefficients

• Predict constructability and 
compliance metrics of concrete

– set time; rheology; steel rebar 
corrosion potential; strength

• Material  design to optimize 
performance

ACI Convention, San Francisco, April 2nd, 2023 Slide 14
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Han et al. Const. 
Build. Mat. 2020 

Han et al. 
Algorithms. 2023 

Xu et al. ACS 
Appl. Mat. Inter. 

2021 

Ponduru et al. 
Materials 2023 

Cai et al. Cem. Conc. Res. 2020 Han et al. Frontiers 2022
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Conclusions

• Machine learning is powerful tool

– Prediction: To predict the behavior of materials (concrete) even—and 
especially—when theory is not well understood

– Optimization: To design new sustainable formulations that satisfy user-
defined criteria

– Simplification: To develop simple, analytical models

• Database volume puts a ceiling on accuracy. Prediction performance can 
be improved

– Using feature selection, data-distillation, and other techniques

– Using theory-based models in tandem with machine learning models

• Bad at identifying functions/mechanisms. Theory based models will 
always be needed to reveal mechanisms. 

– Theory-based models can be used side-by-side; but that’s not good enough

– Deep integration—though difficult—is crucial
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Questions? 
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