

American Concrete Institute

Bridge Deck Evaluation with Non-Destructive Testing

Yail J. Kim, Jun Wang

Presented by: Thi Ha (University of Colorado Denver) Advisor: Prof. Yail J. Kim (University of Colorado Denver)

COLORADO

ACKNOWLEDGMENTS

The authors gratefully acknowledge support from the Colorado Department of Transportation. Valuable comments from S. Abraham (leader of the Study Panel) and T. Tran (Research Manager) are appreciated.

The aging and deterioration of highway bridges are inevitable with time.

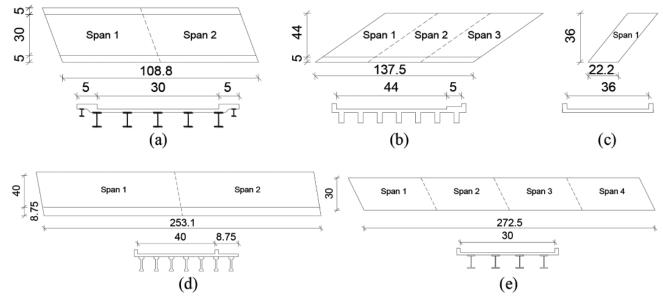
 \rightarrow Regular inspections and maintenance.

Because of numerous uncertainties in the field \rightarrow difficult to detect.

 \rightarrow Approximate approaches such as theoretical modeling and laboratory experiments are frequently employed

More than 5.4% of bridges in Colorado, carrying 2.5 million vehicles a day, were rated structurally deficient as of 2020, and the state is under consistent pressure from an insufficient budget of \$136 million per year.

- \rightarrow Diagnose the condition of bridge decks before the formation of major faults so that costly rehabilitation and replacement can be avoided.
- \rightarrow Nondestructive testing such as Ground-penetrating radar (GPR) is an effective technique (the only available method).



ac

A rehabilitation project managed by the CDOT had a GPR-surveyed repair quantity of 4986 ft2 (463 m2) in a covered deck; however, after removing the asphalt layer, actual areas were found to be 414 ft2 (38 m2).

 \rightarrow Study aims to propose a refined GPR interpretation approach.

(a) B06A; (b) B06S; (c) C08A; (d) B06V; and (e) C07A. (Note: Units in ft; 1 ft = 0.3048 m.)

Five benchmark reinforced concrete decks.

Five benchmark reinforced concrete decks are singled out to investigate physical conditions through various nondestructive tests (rebound hammer, chain drag, and GPR) as well as through the National Bridge Inventory (NBI) records associated with visual inspections.

Analytical and computational models are formulated.

	Year	Number of			Skew,			Top steel reinforcing bar		Asphalt overlay	
ID	built	spans	Length, ft	Width, ft	degrees	ADT	ADTT	Size	Spacing, in.	Thickness, in.	
B06A	1952	2	108.8	30	30	5600	280	No. 5	12.75	4.0	
B06S	1977	3	137.5	44	55	3000	330	No. 5	5.50	3.0	
C08A	1954	1	22.2	36	40	5500	495	No. 4	9.00	6.0	
B06V	1985	2	253.1	40	10	3200	192	No. 5	6.00	1.3	
C07A	1967	4	272.5	30	30	5400	324	No. 5	10.00	3.3	

Nominal data of bridge structures.

Note: ID is identification; length is structural length; width is curb-to-curb width; ADT is average daily traffic; ADTT is average daily truck traffic; No. 4 = 0.5 in. diameter; No. 5 = 0.625 in. diameter; 1 ft = 0.3048 m; 1 in. = 25.4 mm.

- 1. Visual inspection.
- 2. Ground-penetrating radar.
- 3. Rebound hammer.
- 4. Chain drag.

1. Visual inspection.

A qualified inspector performed technical evaluations to rate the structural and geometric conditions of the five bridges.

2. Ground-penetrating radar (ASTM D6087).

Electromagnetic waves were transmitted into the decks and reflections were recorded to quantify the severity of concrete degradation.

The signal attenuation and dielectric discontinuities of the reflected waves were interpreted to identify deteriorated regions.

ac

3. Rebound Hammer (ASTM C805).

Each traffic lane of the bridges was divided into three to four lines, and the strength of the deck concrete was recorded at intervals of 7 ft (2 m).

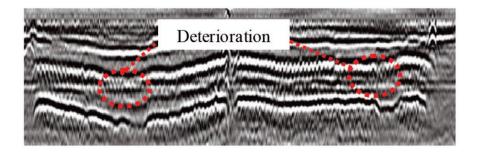
Because rebound readings are concerned with the hardness of an elastic material, degradation of the concrete cover (deck surface to top bars) was of interest.

4. Chain drag (ASTM D4580).

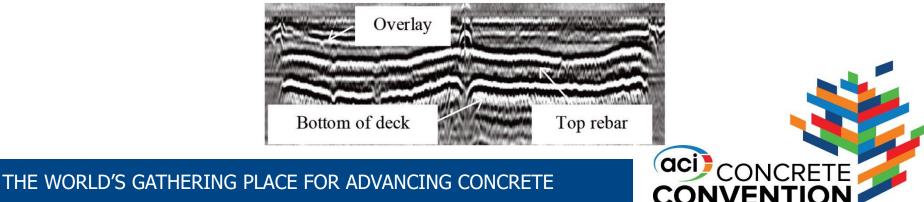
An experienced field engineer dragged steel chains on the deck surface, compared tonal differences (clear vs. dull), and marked possible delaminated regions.

C Rutgers University

1. Visual inspection.


The evaluative information of the bridge decks excerpted from the NBI for the last decade (2010 to 2019). The deck condition rating was maintained to be 7 (Good condition: some minor problems); consequently, no major maintenance and rehabilitation were necessary.

Identification	Deck condition	Deck geometry evaluation				
B06A	7	3				
B06S	7	9				
C08A	7	4				
B06V	7	6				
C07A	7	4				


Information from NBI from 2010 to 2019

2. Ground-penetrating radar.

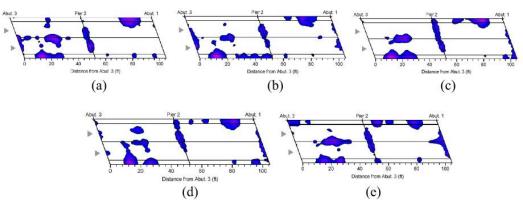
The attenuated signals in the deteriorated regions, resulting from dissipated electromagnetic energy, signify the presence of chlorides, racking, and delamination in the deck concrete.

Electromagnetic waves were not able to penetrate the steel reinforcement, the top-bar location was conspicuous. Likewise, the interface between the asphalt and concrete was detected through their differences in dielectric contrast.

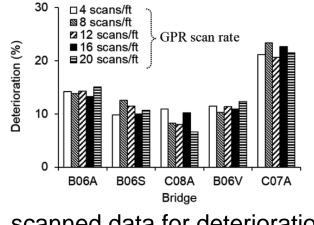
2. Ground-penetrating radar.

		Scan rate,		Deterioration		Average reinforcing bar	Average overlay	
Bridge ID Total area [*] , ft ²		scan/ft	Area, ft ² Ratio, %		Average, %	depth [†] , in.	thickness [†] , in.	
B06A		4	414	12.7				_
	3264	8	402	12.3	12.6			
		12	416	12.7		5.2	2.0	(4.0)
		16	387	11.9				
		20	440	13.5				
		4	659	10.9		5.1		(3.0)
		8	847	14.0				
B06S	6050	12	773	12.8	12.1		2.6 (
		16	672	11.1				
		20	719	11.9				
	799	4	75	9.4	7.6	4.9		(6.0)
		8	57	7.1				
C08A		12	55	6.9			2.6 (
		16	70	8.8]			
		20	45	5.6				
		4	1311	12.9	12.7			(1.3)
	10,124	8	1174	11.6		4.5		
B06V		12	1300	12.8			1.7 (
		16	1243	12.3				
		20	1402	13.8				
C07A	8175	4	1698	20.8			2.0	(3.3)
		8	1874	22.9				
		12	1650	20.2	21.4	4.1		
		16	1818	22.2				
		20	1722	21.1]			

*Total area is structural length (NBI Item No. 49) multiplied by curb-to-curb width (NBI Item No. 51).


[†]Measured from deck surface.

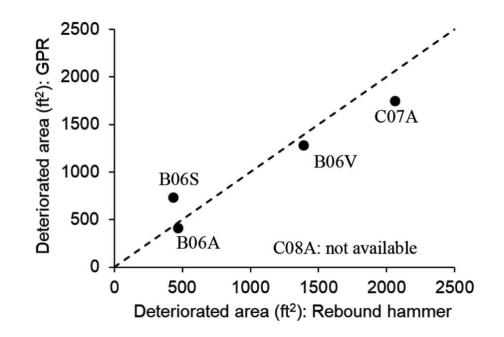
Note: 1 ft² = 0.0929 m².



2. Ground-penetrating radar.

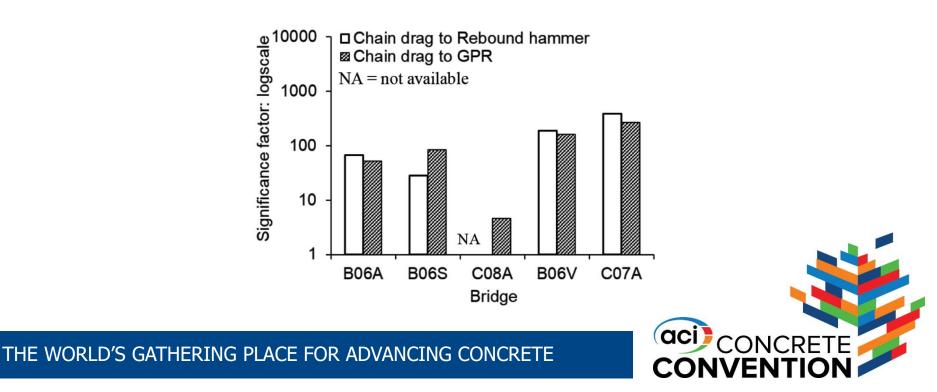
GPR maps with variable scanning rates.

B06A: (a) 4 scans/ft; (b) 8 scans/ft; (c) 12 scans/ft; (d) 16 scans/ft; (e) 20 scans/ft


scanned data for deterioration

3. Rebound hammer.

A 20% reduction of the average strength was set as the limit. The percentage of the measured values below the threshold was then multiplied by the deck area of each bridge to estimate the quantity of deterioration.



ac

4. Chain drag.

To demonstrate the extent of mutual agreement between the test methods, the significance factor (I) proposed by Barnes and Trottier was modified ($I \ge 5$ means a noticeable discrepancy).

$$I = \frac{\left(A_A - A_B\right)^2}{A_{deck}}$$

REPAIRED AREA SUMMARY

	Actual repair			GPR deterioration		Model-based delamination						
ĺ			Scan rate,	Average			Exact		Low bound			
Bridge ID	Area, ft ²	Ratio, %	scan/ft	area, ft ²	Ratio, %	Area, ft ²	Average, ft ²	Ratio, %	Area, ft ²	Average, ft ²	Ratio, %	
	0	0	4	412	12.6	18.44	9.15	0.28	26.96	13.03	0.39	
			8			7.59			9.25			
B06A			12			15.35			19.98			
			16			4.17			7.06			
			20			0.22			1.92			
			4			0			7.67			
	20.9	0.35	8	734	12.1	0	0	0	2.94	7.85	0.13	
B06S			12			0			0.74			
			16			0			15.03			
			20			0			12.87			
		0	4	60	7.5	14.77	3.21	0.40	17.59	4.34	0.54	
	0		8			0			0.54			
C08A			12			0			0.00			
			16			0			0.75	1		
			20			1.29	1		2.83	1		
	7.6	0.08	4	1286	12.7	0	0.25	0.00	34.40	45.78	0.45	
			8			0.89			49.11			
B06V			12			0.34			44.13			
			16			0			31.44			
			20			0.03			69.80			
C07A			4			161.46			161.46			
	270.8	3.31	8	1752	21.4	112.91	99.12	1.21	112.91	99.12	1.21	
			12			88.6			88.6			
			16			42.28			42.28			
			20			90.34	1		90.34	1		

Note: Ratio is ratio to total deck area; 1 ft² = 0.0929 m².

1. Analytical modeling (El Maaddawy, T., and Soudki, K.).

The radial expansion of deck concrete due to reinforcing bar corrosion.

$$\delta = \frac{\left(1 + \upsilon + \psi\right)\left(D + 2\delta_0\right)}{2E_{eff}}P \qquad \psi = \frac{\left(D + 2\delta_0\right)^2}{2C\left(C + D + 2\delta_0\right)}$$

Where,

P is the radial pressure induced by the formation of corrosion rust

v is the Poisson's ratio of concrete (v = 0.2)

D is the diameter of the intact steel reinforcement

 δ 0 is the thickness of the porous zone between the concrete and reinforcement (δ 0 = 0.0008 in. [20 μm], Thoft-Christensen) C is the thickness of the hypothetical cylinder wall (C is clear cover of the reinforcing bar)

Eeff is the effective elastic modulus of the concrete

1. Analytical modeling (El Maaddawy, T., and Soudki, K.).

The simplified uniform corrosion model, taken for modeling convenience, may be replaced by an alternative expression with localized corrosion.

$$t_{i} = \frac{(C/10)^{2}}{4D_{ce}} \left(\operatorname{erf}^{-1} \left(\frac{C_{cr} - C_{0}}{C_{i} - C_{0}} \right) \right)^{-2}$$

Dce is the diffusion coefficient in cm2/s (Dce = $3.1 \times 10-9$ in.2/s [$2.0 \times 10-8$ cm2/s] for a typical deck

erf is the Gauss error function

Ccr and Ci are the critical and initial chloride concentrations (Ccr = 0.4% and Ci = 0% of the cement weight)

C0 is the equilibrium chloride (C0 = 1.6%)

1. Analytical modeling (El Maaddawy, T., and Soudki, K.).

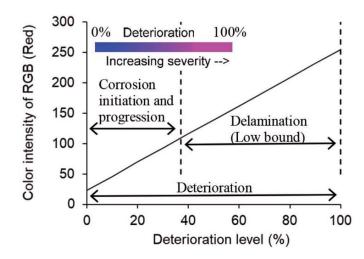
The concrete expansion at cracking (δcr)

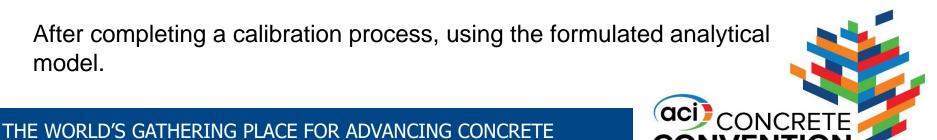
$$\delta_{cr} = \frac{\left(1 + \upsilon + \psi\right)\left(D + 2\delta_0\right)Cf_r}{DE_{eff}} \qquad P_{cr} = \frac{2Cf_r}{D}$$

Pcr is the radial pressure at cracking

fr is the modulus of rupture

With the assumption that energy losses due to cracking are negligible and the corrosion products are uniform around the reinforcing bar, the rustinduced expansion can continue until the deck concrete delaminates at


$$\delta_{del} = \frac{f_r}{2} \left(\frac{S}{D} - 1 \right) \delta_{pp} \ge \delta_{cr} \qquad \delta_{pp} = \left(\frac{D(1 + \phi(t))}{E(0)} \right) \left(1 + \upsilon + D^2 \left(\frac{2}{S^2} + \frac{1}{4C(C + D)} \right) \right)$$


δdel is the concrete expansion at delamination; and S is the spacing of the reinforcing bars

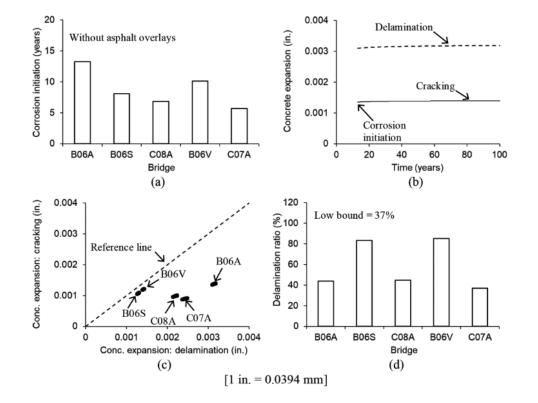
2. Agent-based modeling.

Preprocessing

The deterioration of the GPR contours was decoded in RGB model space, comprising a combination of red, green, and blue, so that the condition of the bridge decks was numerically linked with the scale bar.

2. Agent-based modeling.

Implementation

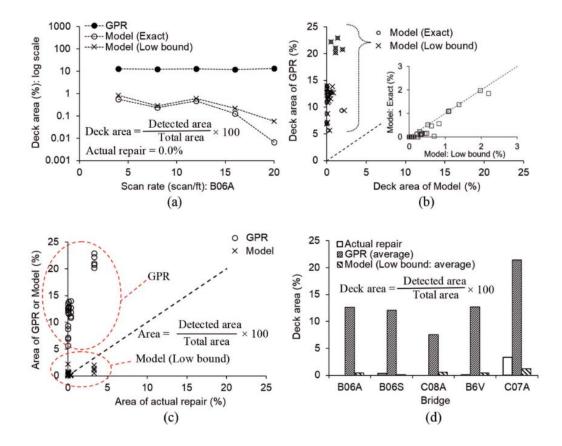

Calculate the delamination ratio

$$\lambda = \frac{\delta_{cr}}{\delta_{del}}$$

3. Delamination of deck concrete.

Model-based delamination

Corrosion-induced damage: (a) corrosion initiation time; (b) concrete expansion due to corrosion at cracking and delamination for B06A; (c) comparison among bridges; and (d) average delamination ratio (λ) for 100 years.


ac

CONCRETE

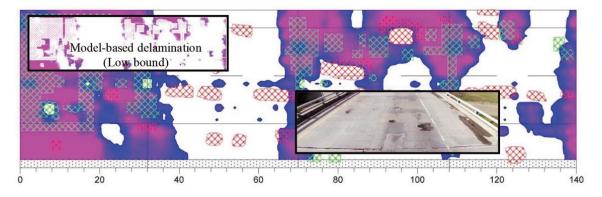
VEN

3. Delamination of deck concrete.

Evaluation

Evaluation of delaminated area: (a) deck area with scan rate for B06A; (b) comparison between GPR and model; (c) comparison among actual repair, GPR, and model; and (d) average comparison.

aci


CONVENT

CONCRETE

3. Delamination of deck concrete.

Independent appraisal

The delamination ratio of λ = 40% was, then, applied to the GPR map of another bridge (F-20-BQ) on the interstate highway I-70.

The patch-repaired area was 1067 ft2 (99 m2). The area of deterioration (delamination) was quantified to be 2898 ft2 (269 m2) and 498 ft2 (46 m2) by GPR and infrared spectroscopy, respectively. In compliance with the proposed modeling approach, a delaminated area of 1022 ft2 (95 m2) was acquired at λ = 40%, which revealed an improved result against the repaired area.

V. CONCLUSION

The effectiveness of various nondestructive test methods has been investigated through five existing bridges in Colorado.

The GPR contour maps at variable scanning rates were employed to assess the extent of deterioration. Even though the scanning rates affected GPR readings, their statistical correlation was insignificant.

The low bound level of the model extracted delaminated areas using the deterioration intensity of the GPR scale above 40%, and reasonable agreement was made with the repaired areas.

THANK YOU FOR PAYING YOUR ATTENTION!

