

An intelligent approach for predicting the performance of repair concrete in a bridge in Northern Ireland from real-time sensor data Harshita Garg

Sreejith Nanukuttan

Queen's University Belfast

Anthony G Cohn

University of Leeds

Muhammed Basheer

University of Leeds

ABERCORN BRIDGE

- Built in 1932 in Newtownstewart, NI
- Hennebique system of RC structure
- Overall the structure was in good condition, except few critical areas

- Localised deterioration
- settlement of deck slab and cracking
- Reduced the strength of the bridge

ABERCORN BRIDGE

- Major patches filled by shrinkagereduced flowable concrete.
- Waterproofing deck surface
- Breathable coating soffit area

- Installed Septopods to monitor the repaired concrete;
- Check whether repaired concrete would protect the steel reinforcement from corrosion

REVIEW OF SENSORS

Septopod – a combination of corrosion sensors, resistance sensors and thermistors

Sensor 1 – 20 mm from deck surface near expansion joint

Sensor 2 – 20 mm from deck surface

REVIEW OF SENSORS

OLD DECK SURFACE LEVEL

TOWARDS RIVER

- Oriented to capture changes in electrical resistivity and temperature near the expansion joint on the deck surface.
- Data was recorded for 4 years 2 months.
- Frequency Every 2 hours for 20 months and twice a day for the remaining period.

RAW DATA FROM THE SENSOR

0

100 200 300 400 500 600 700 800 900 1000110012001300140015001600 Time (Days)

AUTOMATED AI-BASED SHM APPROACH

An automated SHM methodology is applied to SHM data obtained from electrical resistance sensors and thereby to calculate the diffusion coefficient for assessing the performance of the repaired concrete in service.

CORRECTION OF RESISTANCE DATA FOR TEMPERATURE

- Huge cyclic variation in resistance for both sensors.
- Resistance ∝ 1 / temperature
- Arrhenius relationship to reduce the influence of temperature on electrical resistance and standardised to 25°C.
- Huge fluctuations in asmeasured resistance are reduced in standardised resistance.

STANDARDISED RESISTANCE DATA

To assess the performance of repaired concrete

Discuss four parameters:

- Initial rate of increase in resistance,
 - Value of stable resistance,
- Time taken to reach a stabilised resistance value,
 - > Value of Diffusion coefficient.

AUTOMATED CLUSTERING-BASED SEGMENTED REGRESSION

Machine learning

INSIGHTS FROM THE DATA ANALYSIS

INSIGHTS FROM THE DATA ANALYSIS

Determined D using $\frac{De}{D_0} = \frac{\rho}{\rho_{bulk}}$ which could be used to predict the in-service performance.

CONCLUSIONS

- ☐ Challenges Handling and managing uncertain large amounts of data.
- Developed automated clustering based segmented regression approach
- ☐ The value of Diffusion coefficient lies within the range of $2 3 \times 10^{-12} \text{ m}^2/\text{s}$.

- ✓ Demonstrated the need to resort to an automated approach.
- ✓ Very efficient and effective approach
- ✓ Easy to understand and interpret
- ✓ Reasonable insights on the data
- ✓ Good quality concrete.
- ✓ Repaired concrete is performing well.
- ✓ Demonstrating the property to slow the corrosion process.

Thank You for listening Any Questions?

Harshita Garg <cn18hg@leeds.ac.uk>

