Potential for Use of Earthen Materials in 3D Printing Applications

André Fuqua, PhD Candidate in Civil, Architectural, and Environmental Engineering
Dr. Raissa Ferron, Austin Industries Endowed Faculty Fellowship in Civil Engineering

ACI Spring 2023 Convention • Session on Advances in Sustainable and Bio-inspired Cementitious Materials for 3D printing applications Part 1 • 2 April 2023 • San Francisco, CA
Earth: The oldest infrastructure material

Great Wall of China (China, 7th Century BCE)
Source: National Geographic
Walls of some watchtowers made using earth

Great Mosque of Djenné (Mali; 300 BCE)
Source: New York Times
Primarily made from earth

Taos Pueblo (New Mexico; 1000-1450)
Source: John Mackenzie Burke
Primarily made from earth
Earth architecture around the world

World map illustrating the worldwide use of earth construction
Source: CRATerre/ENSAG, 2012

Multi-family apartment building using rammed earth in Mücheln, Germany (1955)
Source: united4design
Traditional earthen building methods

Adobe

Cured adobe blocks in being used for historic restoration of San Miguel Chapel in Santa Fe, New Mexico

Source: André Fuqua

Cob

Close up view of insulating layer (left) and structural layer (right) of cob wall

Source: University of Plymouth Building Physics and Materials Lab

Rammed Earth

Close up of rammed earth wall texture

Source: Rise Design Studio
Renewed interest in earthen construction

Earthen materials have lower embodied energy and thus a lower carbon footprint than concrete.

Carbon Footprint

- **Rammed Earth**: ~55 kg/m³
- **Concrete**: ~240 kg/m³

Embodied Energy

- **Rammed Earth**: ~800 MJ/m³
- **Concrete**: ~2700 MJ/m³

Advanced manufacturing

Compressed Earth Blocks
Source: André Fuqua

3D Earth Printing
Source: Ronald Rael
Unique challenges when building with earth
Concern: Moisture resistance
Stabilization of soils

Soil stabilization is an essential step in improving the durability of earthen materials.

The Chemical Stabilization Process

- **Initial state of soil particles**
- **Mixing and Curing**
- **Soil matrix after formation of hydrates**

Chemical Stabilization Process

- **Cement**
- **Lime**
- **Sand**
- **Silt**
- **Clay**
- **Chemical Stabilizer**
Concern: Safety

Fire Resistance

(b-g) cross-sections of stabilized CEBs after exposure to 24 °C, 200 °C, 400 °C, 600 °C, 800 °C, and 1000 °C

Source: Earth USA 2022 Conference Proceedings, M. Barbato

Structural Integrity

Failure modes of full-size blocks of the same soil type. Molded adobe is shown on the left, and compressed earth block is shown on the right

Source: Lan G., Chao S., Wang Y. et al, 2021
K. **Qualified soil** means any soil, or mixture of soils, that attains 300 psi compression strength and attains 50 psi. modulus of rupture.

14.7.4.3 **STATUTORY AUTHORITY**: Section 60-13-9 and 60-13-44 NMSA 1978.

14.7.4.4 **DURATION**: Permanent.

14.7.4.5 **EFFECTIVE DATE**: November 15, 2016, unless a later date is cited at
Challenge: Communication differences

© 2012 - INTERNET-WEBCOMIC.COM
Characterization language of contractors

Jar Test
Particle size distribution, clay content

Shrink Test Box
Shrinkage, plasticity, clay content

Cigar Test
Plasticity, cohesiveness, texture

Ball Test
Plasticity, clay content

Sniff Test
Soil texture
Characterization language of engineers

Atterberg Limits (ASTM D4318)

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid Limit</td>
<td>29</td>
</tr>
<tr>
<td>Plastic Limit</td>
<td>14</td>
</tr>
<tr>
<td>Plasticity Index</td>
<td>15</td>
</tr>
</tbody>
</table>

Particle Size Distribution (ASTM D6913)

Note: 4.75mm was maximum particle size for mix

<table>
<thead>
<tr>
<th>Particle Size</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravel (>2 mm)</td>
<td>26.4</td>
</tr>
<tr>
<td>Sand (2 – 0.075mm)</td>
<td>68.31</td>
</tr>
<tr>
<td>Silt + Clay (0.075 and finer)</td>
<td>5.23</td>
</tr>
</tbody>
</table>

USCS Classification (ASTM D2487)

SW, well graded coarse grained borderline sand

Casagrande (left) and plastic roller (right) used in Atterberg tests
Challenge: Link between engineering properties and earth performance for building applications

Opportunity: Engineering of earthen mix for buildings
Understanding role of moisture content on earthen materials

Rammed Earth (~5%) Cob (~10%) Adobe (~15%)

Compressed Earth Blocks (~15%) 3D Printing (~25%)
Approach: Engineering of earthen mix for buildings

Characterize soils; Vary moisture content & stabilizer content

Determine density and rheology

Compressive Strength
Capillary Test
Structure

Indoor Air Quality analysis

cement = 5%
cement = 3%
Conclusions

• Renewed interest in earthen materials and advanced construction methods of these materials.

• Chemical stabilization is essential

• Understanding how to identify suitable soils and engineer the mixture design to achieve target performance is needed to advance the field from art to engineering
Questions?

Raissa Ferron: rferron@mail.utexas.edu

André Fuqua: andre.fuqua@utexas.edu