Use of Fly Ash Co-Mingled with Flue Gas Desulfurization Products as Alternative SCM

Farshad Rajabipour, Penn State Gopakumar Kaladharan, US Gypsum

ACI Convention, April 2, 2023, San Francisco

Motivation: Decline in supply of fly ash necessitates studying and deploying non-traditional pozzolans

One new source is high SO₃ coal ash (fresh or harvested)

Slide: 2/22

Currently, ASTM C618 does not allow use of fly ash with $SO_3 > 5.0\%$

Designation: C618 – 22

Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete¹

	Class				
	N	F	С		
Silicon dioxide (SiO ₂) plus aluminum oxide (Al ₂ O ₃) plus iron oxide (Fe ₂ O ₃), min, %	70.0	50.0	50.0		
Calcium oxide (CaO), %	report only	18.0 max.	>18.0		
Sulfur trioxide (SO ₃), max, %	4.0	5.0	5.0		
Moisture content, max, %	3.0	3.0	3.0		
Loss on ignition, max, %	10.0	6.0 ^A	6.0		

TABLE 1 Chemical Requirements

^AThe use of Class F pozzolan containing up to 12.0 % loss on ignition may be approved by the user if either acceptable performance records or laboratory test results are made available.

Where does SO_3 in fly ash come from? What forms of SO_3 may be present in fly ash?

- Pyrite, gypsum, and organic sulfur in coal
- Wet FGD → scrubber sludge (CaSO₃)
- Dry FGD → CaSO₃ or NaSO₄ particles
- FBC boilers \rightarrow CaSO₄ particles
- Sorbent residue may be also present in fly ash: CaCO₃, Na₂CO₃, trona

www.uky.edu/KGS/coal/coal-for-combustionbyproducts.php

We tested 4 real high SO_3 fly ashes, plus an in-spec ash doped with various forms of SO_3 up to 11%wt.

Property	ASTM C618 limits	HSFA1 – CaSO ₃	HSFA2 – CaSO ₃	FBC – CaSO ₄	TFA − Na₂SO₄	Spec. fly ash (CFA)
SiO ₂ +Al ₂ O ₃ +Fe ₂ O ₃ (wt%)	Min 50.0%	49.2%	48.3%	68.6%	51.0%	88.0%
CaO (wt%)	F≤18.0% <c< td=""><td>25.5% (C)</td><td>27.2% (C)</td><td>14.4% (F)</td><td>25.4% (C)</td><td>3.4% (F)</td></c<>	25.5% (C)	27.2% (C)	14.4% (F)	25.4% (C)	3.4% (F)
SO ₃ (wt%)	Max 5.0%	13.3%	11.8%	8.0%	6.1%	0.8%
Na ₂ O _{eq} (wt%)	Max 4.0%	1.4%	1.3%	1.7%	6.5%	1.4%
LOI (wt%)	Max 6.0%	2.6%	2.3%	3.4%	2.6%	2.3%
Fineness (%)	Max 34%	7.5%	9.4%	32.7%	14.8%	23.1%
SAI 7-day	Either one	96%	85%	86%	75%	75%
SAI 28-day	≥ 75%	97%	99%	91%	75%	79%
Water req. (%)	Max 105%	100%	98%	107.4%	100%	100%

QXRD of the four high SO₃ fly ashes

QXRD of the four high SO₃ fly ashes

Slide: 7/20

Next, we evaluated the performance of pastes and mortars with 20% fly ash as OPC repl.

Slide: 8/20

Performance of pastes and mortars with 20% fly ash as OPC repl. – Table reports impact vs. Ctr fly ash

Material	Vicat Setting time	Pore fluid pH	Mortar Flow	Flow retention	Strength (early – 1d)	Strength (later – 91d)	Exp. lime water
Ctr ash doped w/ CaSO ₄	Minimal	NA	Minimal	Minimal	Slight Reduction	Minimal	High ≥11%SO ₃
Ctr ash doped CaSO ₄ .2H ₂ O	Minimal	NA	Minimal	Minimal	Slight Reduction	Minimal	High ≥11%SO ₃
FBC fly ash	Retards (1.5x)	NA	Reduces	Minimal	Minimal	Minimal	Increase but meets limit
Ctr ash doped	Slightly retards	ΝΔ	Minimal	Minimal	Slight	Minimal	
$CaSO_3.7211_2O$	(SO ₃ ≥ 9%)		ivii iiriai	Winning	Reduction	iviii iirricai	Small
HSFA1 & HSFA2	(SO ₃ ≥ 9%) Significant delay (3x)	NA	Minimal	Increases	Reduction Slight reduction	Minimal	Small increase
HSFA1 & HSFA2 Ctr ash doped w/ Na_2SO_4	(SO ₃ ≥ 9%) Significant delay (3x) Accelerates	NA Significant increase	Minimal	Increases	Reduction Slight reduction Increases	Minimal Reduces	Small increase Small

Silue. S/20

FBC Fly Ash (contains CaSO₄)

- Note the particle shape and internal porosity of fly ash
- Modestly retards setting
- Causes expansion in hardened mortar (DEF)

Vicat setting time show delay up to 2hrs Calorimetry: small shift in C₃S and large shift in C₃A peaks

Limewater expansion continues over time (presumably due to ettringite formation)

FBC fly ash supplies CaSO₄ which delays C₃A hydration and forms ettringite causing expansion

Slide: 13/20

Fly ash containing CaSO₃

Material	Vicat Setting time	Pore fluid pH	Flow	Flow retention	Strength (early – 1d)	Strength (later – 91d)	Exp. lime water
Ctr ash doped CaSO ₃ .½H ₂ O	Slightly retards (SO ₃ ≥ 9%)	NA	Minimal	Minimal	Slight Reduction	Minimal	Small
HSFA1 & HSFA2	Significant delay (3x)	NA	Minimal	Increases	Slight reduction	Minimal	increase

$CaSO_3$ initial and final setting by >4hrs. Accelerators can help.

CaSO₃ delays both C₃S and C₃A hydration. Cumulative heat (and strength) cross over at \sim 3 days.

QXRD: $CaSO_3$ retards rxn of C_3S , C_3A , Gyp w/in the first 24h. CaSO₃ is only slowly consumed.

Slide: 17/20

Slide: 18/20

$CaSO_3$ solubility is low (2mM), so its particle size matters! (finer CaSO₃ leads to further setting delay)

Motorial	Particle size (µm)					
Waterial	D10	D50	D90			
Han-1	8.8	58.8	214.4			
Han-1 milled	3.0	24.7	74.7			
Han-2	8.4	14.8	24.8			
Han-2 milled	2.1	9.3	18.5			
HSFA1	1.4	5.9	35.0			
HSFA2	1.7	12.2	43.8			

Beneficiation options:

- 1. Accelerators (chemical or fine LS powder)
- 2. Acid washing (generates SO₂ gas)
- 3. Discard fine fraction of fly ash (<3um)

Conclusions

- Both the form and content of SO₃ in fly ash matter.
- The 5.0% SO₃ limit of ASTM C618 maybe too conservative.
- Instead, we recommend performance testing for flow, set time, strength, and expansion of mortar.
- CaSO₄ (in FBC fly ash) leads to ettringite formation and risk of expansion only when SO₃≥11%.
- CaSO₃ (and SO₃ ions) retard C₃S hydration \rightarrow delay C₃A and Gyp consumption.
- More work needed in understanding long-term hydration, durability, and methods to offset setting delays.

Thank you very much! <u>farshad@psu.edu</u>

References

- M. Zahedi, F. Rajabipour, Fluidized bed combustion (FBC) fly ash and its performance in concrete, ACI Materials Journal, 116(4) (2019); doi: 10.14359/51716720
- M. Zahedi, K. Jafari, F. Rajabipour, Properties and durability of concrete containing fluidized bed combustion (FBC) fly ash, Construction and Building Materials, 258 (2020); <u>https://doi.org/10.1016/j.conbuildmat.2020.119663</u>
- G. Kaladharan, F. Rajabipour, Evaluation and beneficiation of high sulfur and high alkali fly ashes for use as supplementary cementitious materials in concrete, Construction and Building Materials, 339 (2022); https://doi.org/10.1016/j.conbuildmat.2022.127672
- G. Kaladharan, RM. Ghantous, F. Rajabipour, Early age hydration behavior of Portland cement-based binders incorporating fly ash contaminated with flue gas desulfurization products, Cement and Concrete Composites, in review

Fly ash containing Na₂SO₄ (e.g., trona contaminated ash)

Material	Vicat Setting time	Pore fluid pH	Flow	Flow retention	Strength (early – 1d)	Strength (later – 91d)	Exp. lime water
Ctr ash doped w/ Na ₂ SO ₄	Accelerates	Significant increase	Minimal	Minimal	Increases	Reduces	Small
TFA	Flash setting	Significant increase	Minimal	Rapid loss	Increases	Reduces	increase

Higher Na₂SO₄ in fly ash leads to higher pore solution pH; Good news: pH-regulating admixtures work

 $Na_2SO_4 + Ca(OH)_2 \rightarrow 2 NaOH + CaSO_4$ $Ca(CH_3COO)_2 + 2 NaOH \rightarrow 2 Na(CH_3COO) + Ca(OH)_2$

Doping Na₂SO₄ in fly ash slightly accelerates setting, but trona fly ash flash sets, why?

 $Ca(CH_3COO)_2 + (Na_2CO_3/Na_2SO_4) \rightarrow 2 Na(CH_3COO) + (CaCO_3/CaSO_4)$

Na_2CO_3 accelerates C_3A and C_3S hydration; CAc retards both C_3A and C_3S

Slide: 25/20

CaSO₃ delays both C₃S and C₃A hydration Accelerators can help

Slide: 26/20

Existing standards limit SO₃ and alkali content in fly ash; validity of limits tested using doped and real systems

Standard	SO ₃ limit	Na ₂ O _{eq} limit	Remarks
ASTM C618	Max 5.0%	Report	Based on OPC performance?
ASTM C595	Max 4.0% (IP)	Report	Higher SO ₃ allowed – C1038 expansion limit
ASTM C1778	None	Max 4.0%; <3.0% pref.	Low pH for ASR mitigation

- Testing doped systems allows wide range and variety
- SO₃ levels chosen based on:
 - HSFA/HSAFA observed in literature and those obtained for testing
 - Represents values below & above ASTM limits

Doped fly ash (DFA) SO ₃ content	3%	5%	7%	9%	11%
Binder SO ₃ content	3.75%	4.15%	4.55%	4.95%	5.35%

• PC replacement level fixed at 20% by mass

Fine hannebachite and sodium sulfite both showed significant setting delay – effect of sulfite ion

All SO₃ forms result in expansion of hardened mortar but only CaSO₄ at SO₃ \geq 11.0% exceeds the limit

Acknowledgements

Project Title: Thermodynamic and kinetic simulations and testing procedures to screen for enhanced durability of concrete containing industrial waste

