Rigorous Yield Line Analysis to Evaluate the Capacity of RC Barriers Subjected to Vehicular Collision Force

By
Fahed H. Salahat

Supervisors
Prof. Hayder A. Rasheed Prof. Christopher A. Jones

Outline

1. Introduction

2. Research Contribution and Methodology
3. Yield Line Analysis
4. AASHTO's Procedure of YLA
5. Rigorous YLA of RC Barriers
6. Case Study

7. Conclusions and Recommendations

1. Introduction

Kansas State Uhiversity
Department of Civil Engineering

- RC barriers are commonly used as intervening structures protecting bridge piers against vehicular collision force (VCF)
- The framework that leads to a successful placement of these barriers includes three main factors:

Kansas State Uhiversity

Department of Civil Engineering

2. Research Contribution and Methodology

Develop rigorous analysis and innovative methodology to accurately evaluate the transverse static structural capacity of RC barriers.

Reviewing existing methodologies to obtain the capacity of RC barriers

Deriving detailed analysis method based on theories and mechanics of reinforced concrete

Conducting an implicit
FEA on a case study of RC barrier to validate the proposed methodologies and verify the solution

Developing rigorous analytical model to obtain the capcity of RC barriers subjected to lateral static force

[^0]- The most common analysis method used to verify whether a proposed barrier design meets the requirements of a performance level is the YLA
- The YLA is currently adopted by AASHTO's LRFD Bridge Design Specifications (Section 13)
- This method is based on equating the work done by the external applied forces (Ue) and the internal energy developed through the formation of yield lines along the failure pattern (Ui)

4. AASHTO's procedure of YLA

- The current AASHTO procedure of YLA include some assumptions that are intended to simplify the analysis
- Many researchers criticized the simplified AASHTO's procedure of YLA in terms of the capacity estimation and the failure pattern

V-shape (AASHTO's procedure)

W-shape (Cao et al. 2020)

AASHTO's assumptions

1. The deck has sufficient resistance to the applied transverse forces thus the yield line failure pattern will remain within the parapet.
2. The presence of sufficient longitudinal length of the parapet to produce the assumed V-shape yield line failure pattern.
3. The flexural capacity of the RC barrier is only from the concrete contribution; the contribution of the stirrups and/or ties is to prevent shear and diagonal tension.
4. The wall resistance as the average of its value along the height when the width of the barrier varies along the height.
5. The negative and positive wall resisting moments are equal

Kansas State Uhiversity

Department of Civil Engineering

Assumptions

3. The flexural capacity of the RC barrier is only from the concrete contribution; the contribution of the stirrups and/or ties is to prevent shear and diagonal tension.
4. The wall resistance as the average of its value along the height when the width of the barrier varies along the height.
5. The negative and positive wall resisting moments are equal

Kansas State Uhiversity

Department of Civil Engineering

Where:
$\boldsymbol{R} \boldsymbol{w}=$ total transverse resistance of the railing (kips)
$\boldsymbol{L} \boldsymbol{c}=$ critical length of yield line failure pattern (ft)
$\boldsymbol{L t}=$ longitudinal length of distribution of impact force $F t(\mathrm{ft})$, specified in
(Table A13.2-1) [3]
$\boldsymbol{M b}=$ additional flexural resistance of beam in addition to $M z$, if any, (kip- ft)
$\boldsymbol{M x}=$ flexural resistance of cantilevered walls about an axis parallel to the longitudinal axis of the bridge (kip- $\mathrm{ft} / \mathrm{ft}$), ($M c$ in AASHTO's specifications).
$\boldsymbol{M z}=$ flexural resistance of the wall about its vertical axis (kip-ft), (Mw in AASHTO's specifications).

$$
\begin{aligned}
& R_{w}=\left(\frac{2}{2 L_{c}-L_{t}}\right) \times\left(8 M_{b}+8 M_{z}+\frac{M_{x} L_{c}{ }^{2}}{H}\right) \quad \text { Eq. } 1 \\
& L_{c}=\frac{L_{t}}{2}+\sqrt{\left(\frac{L_{t}}{2}\right)^{2}+\frac{8 H\left(M_{b}+M_{z}\right)}{M_{x}}}
\end{aligned}
$$

$\boldsymbol{H}=$ height of wall (ft)

Kansas State Uhiversity

5. Rigorous YLA

This procedure is targeted to cover the generalized case of RC barriers

Assumptions

1. Concrete is inextensible through the thickness.
2. For barriers that have sloped sides, the value of the deformation angle measured with respect to an assumed vertical plane and the deformation angle of the actual sloped side is almost the same. Therefore, the angle used in the derivations are referenced with respect to the vertical plane.
$\theta_{1}=\tan ^{-1} \frac{1}{h_{1}}$

$$
\theta_{2}=\tan ^{-1} \frac{1}{h_{1}+h_{1} \tan ^{2} \beta_{2}+\tan \beta_{2}}
$$

$$
\theta_{3}=\tan ^{-1} \frac{1}{h_{1}+h_{1} \tan ^{2} \beta_{3}+\tan \beta_{3}}
$$

Eq. 3

Eq. 4

Eq. 5

Sectional capacity

Kansas State Uhiversity

Formulation of yield lines

The internal work (Ui) along the yield lines is the sum of the products of the yield moments and the rotations through which they act integrated along the barriers height (z -axis).

Kansas State Uhiversity

$$
\begin{aligned}
& \theta \mathrm{z}(\mathrm{z})=\frac{\delta_{\mathrm{z}}}{\mathrm{x}} \\
& \delta_{\mathrm{z}}=\frac{\mathrm{H}-\mathrm{z}}{\mathrm{H}} \\
& \mathrm{x}=\frac{(\mathrm{H}-\mathrm{z})}{\tan \alpha} \\
& \theta \mathrm{z}(\mathrm{z})=\frac{\delta_{\mathrm{z}}}{x}=\frac{(H-\mathrm{z}) \tan \alpha}{H(H-z)}=\frac{\tan \alpha}{H} \\
& \theta \mathrm{x}(\mathrm{z})=\frac{\delta_{\mathrm{x}}}{\mathrm{z}} \\
& \delta_{\mathrm{x}}=1-\frac{2 \mathrm{x}}{\mathrm{~L}_{\mathrm{c}}} \\
& \mathrm{x}=\frac{(\mathrm{H}-\mathrm{z})}{\tan \alpha} \\
& 1=\frac{2 \mathrm{H}}{\mathrm{~L}_{\mathrm{c}} \tan \alpha} \\
& \theta x(\mathrm{z})=\frac{1}{H}
\end{aligned}
$$

Eq. 6

Eq. 7

Eq. 8

Eq. 9

Eq. 10

Eq. 11

Eq. 12

Eq. 13
Eq. 14

$$
\begin{aligned}
& d_{s}=\sqrt{d x^{2}+d z^{2}}=d z \sqrt{\left(\frac{d x}{d z}\right)^{2}+1}=d z \sqrt{1+\cot ^{2} \alpha}=d z . \csc \alpha \quad \text { Eq. } 15 \\
& U_{i}=\int M_{z \text { back }}(z) \times 2 \theta_{z} \times d z+2 \int M_{s \text { front }}(z) \times \theta_{s} \times d s \quad \text { Eq. } 16 \\
& U_{i} \\
& =2 \int M_{z \text { back }}(z) \times \theta_{z} \times d z+2 \int M_{x \text { front }}(z) \times \theta_{x} \times d s \\
& +2 \int M_{z \text { front }}(z) \times \theta_{z} \times d s \\
& U_{i} \\
& =2 \int \frac{M_{z \text { back }}(z) \times \tan \alpha \times d z}{H}+2 \int \frac{M_{x \text { front }}(z) \times \csc \alpha d z}{H} \\
& +2 \int \frac{M_{z \text { front }}(z) \times \tan \alpha \csc \alpha \times d z}{H} \quad \text { Eq. } 17
\end{aligned}
$$

Eq. 16

Eq. 17

Eq. 18

Kansas State Uhiversity
Department of Civil Engineering

The length of contact between the vehicle and the concrete barrier is L_{t} and the force that is applied by the vehicle is equal to F_{t}, then the external work (Ue) is given as:

$U_{e}=\frac{1}{2} \times(1+x) \times \frac{L_{t}}{2} \times W_{t} \times 2=\frac{L_{t} W_{t}(1+x)}{2}$
$x=1-\frac{L_{t}}{L_{c}}$
$U_{e}=L_{t} W_{t}\left(1-\frac{L_{t} \tan \alpha}{4 H}\right)$

Eq. 19

Eq. 20

Eq. 21

Equating the internal work from Eq. 18 with the external work from Eq. 21 yields the solution for Wt as in Eq. 22.

A closed form solution for Eq. 22 can be obtained by solving $\mathrm{dWt} / \mathrm{d} \alpha=\mathbf{0}$

$$
W_{t}=\frac{2\left(\int M_{z \operatorname{back}}(z) \times \tan \alpha \times d z+\int M_{x f r o n t}(z) \times \csc \alpha d z+\int M_{z f r o n t}(z) \times \tan \alpha \csc \alpha \times d z\right)}{H \times L_{t}\left(1-\frac{L_{t} \tan \alpha}{4 H}\right)}
$$

6. Case Study

- The design of the barrier was provided by Kansas Department of Transportation (KDOT)
- The concrete compressive strength ($\mathrm{f}^{\prime} \mathrm{c}$) is 27.6 MPa (4000 psi) and the steel yield stress (fy) is 413 MPa (60 ksi)

	Front side					Back side		
Bar Id	1	2	3	4	5	5	6	7
Area $\left(\mathrm{mm}^{2}\right)$	129	129	129	129	284	284	129	129
Cover (mm)	45	122	76	76	107	92	60	60

Kansas State Uhiversity

Department of Civil Engineering

AASHTO's YLA

$$
\begin{array}{ll}
f_{r}=\frac{M_{r} \times c}{I_{g}} & \text { Eq. } 23 \\
f_{r}=7.5 \lambda \sqrt{f c}=0.474 \mathrm{ksi} & \text { Eq. } 24
\end{array}
$$

Property	Mz		Mx (for 1 ft segment width)		
	$\begin{gathered} \text { Section 1 } \\ \left(\mathrm{Z}_{1}=0-22 \mathrm{in}\right) \end{gathered}$	$\begin{gathered} \text { Section } 2 \\ \left(\mathrm{Z}_{1}=22-32 \mathrm{in}\right) \end{gathered}$	$\begin{aligned} & \text { Section } 1 \\ & \left(\mathrm{Z}_{1}=0 \mathrm{in}\right) \end{aligned}$	$\begin{gathered} \text { Section } 2 \\ \left(\mathrm{Z}_{2}=22 \mathrm{in}\right) \end{gathered}$	$\begin{gathered} \text { Section } 3 \\ \left(\mathrm{Z}_{3}=32 \mathrm{in}\right) \end{gathered}$
b (in)	22	10	12	12	12
h (in)	$(7.5+9.75) / 2=8.62$	$\begin{gathered} (14.75+9.75) / 2=12.2 \\ 5 \end{gathered}$	7.5	9.75	14.75
c (in)	4.3125	6.125	3.75	4.875	7.375
$\operatorname{Ig}\left(\mathrm{in}^{4}\right)$	1176.3	1531.8	421.875	926.86	3209
	118.64 kip.in	129.38 kip.in	53.4 kip.in	90.2 kip.in	206.4 kip.in
Moment	Sum $=248$ kip.in $=20.67 \mathrm{kip} . \mathrm{ft}$		$\begin{gathered} \text { Weighted avg. }=(0.5(53.4+90.2) 22+0.5 \\ (90.2+206.4) 10) / 32=95.7 \mathrm{kip} . \mathrm{in}=8 \\ \text { kip.ft } \end{gathered}$		

Kansas State Uhiversity

Table Al3.2-1-Design Forces for Traffic Railings

Design Forces and Designations	Railing Test Levels					
	TL-1	TL-2	TL-3	TL-4	TL-5	TL-6
F_{t} Transverse (kips)	13.5	27.0	54.0	54.0	124.0	175.0
F_{L} Longitudinal (kips)	4.5	9.0	18.0	18.0	41.0	58.0
F_{v} Vertical (kips) Down	4.5	4.5	4.5	18.0	80.0	80.0
L_{t} and $L_{L}(\mathrm{ft})$	4.0	4.0	4.0	3.5	8.0	8.0
$L_{v}(\mathrm{ft})$	18.0	18.0	18.0	18.0	40.0	40.0
$H_{e}(\mathrm{~min})($ in.)	18.0	20.0	24.0	32.0	42.0	56.0
Minimum H Height of Rail (in.)	27.0	27.0	27.0	32.0	42.0	90.0

$$
\begin{aligned}
& R_{w}=\left(\frac{2}{2 L_{c}-L_{t}}\right) \times\left(8 M_{b}+8 M_{z}+\frac{M_{x} L_{c}{ }^{2}}{H}\right) \quad \text { Eq. } 1 \\
& L_{c}=\frac{L_{t}}{2}+\sqrt{\left(\frac{L_{t}}{2}\right)^{2}+\frac{8 H\left(M_{b}+M_{z}\right)}{M_{x}}}
\end{aligned}
$$

$$
L_{c}=9.39 \mathrm{ft} \text { and } R_{w}=56.2(250 \mathrm{kN}) .
$$

Kansas State Uhiversity

Rigorous YLA

	Front side					Back side		
Bar Id	1	2	3	4	5	5	6	7
Area $\left(\mathrm{mm}^{2}\right)$	129	129	129	129	284	284	129	129
Cover (mm)	45	122	76	76	107	92	60	60

Kansas State Uhiversity

	Back side	
Step	Section $1\left(\mathrm{Z}_{1}=0-560\right)$	Section $2\left(Z_{2}=560-813\right)$
1	$\frac{A s}{h}=\frac{284+129+129}{813}=0.67 \mathrm{~mm}^{2} / \mathrm{mm}$	
2	$\text { Avg. Cover }=\frac{92 \times 284+60 \times 129+60 \times 129}{542}=76.7 \mathrm{~mm}$	
3	$\begin{gathered} d_{0}=190-76.7=113.23 \mathrm{~mm} \\ d_{z 1}=113.23+\text { Slope } 1 \times Z_{1} \\ =113.23+0.1025 Z_{1} \end{gathered}$	$\begin{gathered} d_{0}=190+\text { Slope } 1 \times Z_{1}-76.7 \\ d_{z 2}=170.7+\text { Slope } 2 \times Z_{2} \\ =170.7+0.5 Z_{2} \end{gathered}$
4	$\begin{aligned} & \quad M_{Z 1}=A_{s} f_{y}\left(d-\frac{a}{2}\right) \\ & a=\frac{A_{s} f_{y}}{0.85 f c^{\prime} b}=\frac{542 \times 413}{0.85 \times 27.6 \times 813} \\ & =11.74 \mathrm{~mm} \\ & M_{Z 1} \\ & =0.67 \times 413 \\ & \times\left(113.23+0.1025 Z_{1}-\frac{11.74}{2}\right) \end{aligned}$	$\begin{gathered} M_{Z 2}=A_{s} f_{y}\left(d-\frac{a}{2}\right) \\ a=\frac{A_{s} f_{y}}{0.85 f^{\prime} b}=\frac{542 \times 413}{0.85 \times 27.6 \times 813} \\ =11.74 \mathrm{~mm} \\ M_{Z 2}=0.67 \times 413 \times\left(170.7+0.5 Z_{2}-\frac{11.74}{2}\right) \end{gathered}$
5	$M_{Z 1}=29.7+0.0283 \times Z_{1} \mathrm{kN} . \mathrm{mm} / \mathrm{mm}$	$\begin{gathered} M_{Z 2}=45.6+0.138 \times Z_{2} \mathrm{kN} . \mathrm{mm} / \mathrm{mm} \\ M_{Z 2}=80.6-0.138\left(813-Z_{2}\right) \mathrm{kN} . \mathrm{mm} / \mathrm{mm} \end{gathered}$

Vertical Axis

For each side of the barrier, sum the longitudinal reinforcement at that side and divide by the full heigh of the barrier to obtain the reinforcement ratio per unit height

For each side of the barrier, if the cover to the
longitudinal reinforcement is not uniform, find a
weighted average cover

Write the depth of reinforcment as a function of the height for the corresponding section along the heigh

Kansas State Uhiversity

	Front side	
Step	Section $1\left(\mathrm{Z}_{1}=0-560\right)$	Section $2\left(Z_{2}=560-813\right)$
1	$\frac{A s}{h}=\frac{284+129+129+129+129}{813}=0.984 \mathrm{~mm}^{2} / \mathrm{mm}$	
2	$\text { Avg. Cover }=\frac{107 \times 284+76 \times 129+76 \times 129+122 \times 129+45 \times 129}{800}=89.4 \mathrm{~mm}$	
3	$\begin{gathered} d_{0}=190-89.4=100.57 \mathrm{~mm} \\ d_{z 1}=100.57+\text { Slope } 1 \times Z_{1} \\ =100.57+0.1025 Z_{1} \end{gathered}$	$\begin{gathered} d_{0}=190+\text { Slope } 1 \times Z_{1}-89.4 \\ d_{z 2}=158+\text { Slope } 2 \times Z_{2} \\ =158+0.5 Z_{2} \end{gathered}$
4	$\begin{aligned} & \quad M_{Z 1}=A_{s} f_{y}\left(d-\frac{a}{2}\right) \\ & a=\frac{A_{s} f_{y}}{0.85 f c^{\prime} b}=\frac{800 \times 413}{0.85 \times 27.6 \times 813} \\ & =17.323 \mathrm{~mm} \\ & M_{Z 1} \\ & =0.984 \times 413 \\ & \times\left(100.57+0.1025 Z_{1}-\frac{17.323}{2}\right) \end{aligned}$	$\begin{gathered} M_{Z 2}=A_{s} f_{y}\left(d-\frac{a}{2}\right) \\ a=\frac{A_{s} f_{y}}{0.85 f c^{\prime} b}=\frac{800 \times 413}{0.85 \times 27.6 \times 813}=17.323 \mathrm{~mm} \\ M_{Z 2}=0.984 \times 413 \times\left(158+0.5 Z_{2}-\frac{17.323}{2}\right) \end{gathered}$
5	$M_{Z 1}=37.35+0.0417 \times Z_{1} \mathrm{kN} . \mathrm{mm} / \mathrm{mm}$	$\begin{gathered} M_{Z 2}=60.69+0.203 \times Z_{2} \mathrm{kN} . \mathrm{mm} / \mathrm{mm} \\ M_{Z 2}=112.26-0.203\left(813-Z_{2}\right) \mathrm{kN} . \mathrm{mm} / \mathrm{mm} \\ \hline \end{gathered}$

Vertical Axis

Kansas State Uhiversity

Kansas State Uhiversity

$$
\begin{aligned}
& M_{Z_{Z} \text { back }}(\mathrm{z})=\left\{\begin{array}{cl}
29.7+0.0284 \mathrm{zkN} \cdot \frac{\mathrm{~mm}}{\mathrm{~mm}}, & 0 \leq \mathrm{z} \leq 560 \\
80.6-0.1378(813-z) k N \cdot \frac{\mathrm{~mm}}{\mathrm{~mm}}, & 560 \leq \mathrm{z} \leq 813
\end{array}\right. \\
& M_{z_{-} f r o n t}(z)=\left\{\begin{array}{rl}
37.35+0.0418 \mathrm{zkN} \cdot \frac{\mathrm{~mm}}{\boldsymbol{m} \boldsymbol{m}}, & 0 \leq \mathrm{z} \leq 560 \\
112.26-0.203(813-z) k N \cdot \frac{m m}{m m}
\end{array}, \quad 560 \leq \mathrm{z} \leq 813\right. \\
& M_{x_{-} b a c k}(z)= \begin{cases}19.6+0.1514 z k N \cdot \frac{m m}{m m}, & 0 \leq z \leq 560 \\
88.89+0.06(813-z) k N \cdot \frac{m m}{m m}, & 560 \leq z \leq 813\end{cases} \\
& M_{x_{-} f r o n t}(z)=\left\{\begin{array}{cl}
19.6+0137 \mathrm{zkN} \cdot \frac{\mathrm{~mm}}{\mathrm{~mm}}, & 0 \leq z \leq 560 \\
78.82+0.0684(813-z) k N \cdot \frac{\mathrm{~mm}}{\mathrm{~mm}}, & 560 \leq z \leq 813
\end{array}\right. \\
& \text { Eq. } 25 \\
& \text { Eq. } 26 \\
& \text { Eq. } 27 \\
& \text { Eq. } 28
\end{aligned}
$$

$$
W_{t}=\frac{2\left(\int M_{z \operatorname{back}}(z) \times \tan \alpha \times d z+\int M_{x \text { front }}(z) \times \csc \alpha d z+\int M_{z \text { front }}(z) \times \tan \alpha \csc \alpha \times d z\right)}{H \times L_{t}\left(1-\frac{L_{t} \tan \alpha}{4 H}\right)} \quad \text { Eq. } 29
$$

For the distributed load along $L_{t}=1067 \mathrm{~mm}(3.5 \mathrm{ft})$

$$
\mathrm{W}_{\mathrm{t}}=\frac{91.19 \tan \alpha+134.3 \csc \alpha+121.47 \sec \alpha}{1067\left(1-\frac{1067 \tan \alpha}{4 \times 813}\right)}
$$

$$
\text { Eq. } 30
$$

Kansas State Uhiversity

Department of Civil Engineering

Finite Element Analysis (FEA) by Abaqus

- The model assembly consisted of the barrier (concrete) part and the reinforcement (steel) parts
- The concrete material was modeled using the concrete damage plasticity model
- The steel material was modeled bilinearly with a post yielding modulus of 5% of the initial modulus
- The concrete elements had solid sections with an 8-node linear brick element type (C3D8R)
- The steel elements were modeled as beam elements

Concrete model

Steel model

- To describe the model mesh, the largest concrete element had dimensions in mm as $60 \times 60 \times 40$ amounting to a total of 5044 solid elements
- The barrier's boundary condition was fixed by restraining the translational degrees of freedom of the concrete elements at the base
- The analysis type was nonlinear static Riks with the loading defined as a pressure applied at the loading surface
- The loading surface has a length equals to $1067 \mathrm{~mm}(3.5 \mathrm{ft})$ and its width extends down until the discontinuity in the barrier's height occurs at 560 mm
- The target pressure was set to $1.72 \mathrm{MPa}(250 \mathrm{psi})$; considering the area of pressure application, this is equivalent to a target load of 1027 kN
- The analysis predicts a proportionality factor of 0.55 of the target load (1027 kN). This results in a peak capacity of $0.55 \times 1027=554 \mathrm{kN}$

Stress profile in the barrier's reinforcement

max. absolute principal strain in concrete

Kansas State Uhiversity

Department of Civil Engineering

7. Summary and Conclusion

Loading Pattern	Method	Static transverse capacity	Normalized to AASHTO
Distributed	AASHTO's YLA	250 kN	1
	Rigorous YLA	569 kN	2.276
	FEA by Abaqus	554 kN	2.216

1. The current AASHTO's YLA underestimated the barrier's transverse capacity by more than 50% compared to the detailed YLA and the FEA
2. The proposed rigorous YLA is very powerful in obtaining the barrier's accurate transverse capacity
3. The current AASHTO's YLA can be used to initially proportion barriers for design purposes. However, estimating the actual capacity of existing barrier needs more accurate procedures such as the Rigorous YLA or FEA

Fahed H. Salahat, Ph.D., EIT
salahatf@ksu.edu

Thank You

Kansas State Uhiversity

Department of Civil Engineering

[^0]: Kansas State Uhiversity
 Department of Civil Engineering

