

The role of graphene-based nanomaterials for enhancing CO₂ uptake and mineralization in engineered concrete

Maria S. Konsta-Gdoutos¹, Panagiotis A. Danoglidis²

¹Professor of Civil Engineering, Associate Director, Center for Advanced Construction Materials maria.konsta@uta.edu

²Assistant Professor of Research, Department of Civil Engineering, Center for Advanced Construction Materials panagiotis.danoglidis@uta.edu

ACI Spring Convention 2023 Nanotechnology for Concrete with Low Carbon Footprint April 2 - 6, 2023, Hilton San Francisco Union Square, San Francisco, CA

UNIVERSITY OF TEXAS 📌 ARLINGTON

https://cacm.uta.edu/

2D Graphene Nanoplatelets in Concrete

✓ Control the interfacial processes at the nanostructured C-S-H/graphene interfaces

"As received" GNPs

Exfoliated Tri-layer GNPs in Suspension

Materials and Experimental Program

	Number of Layers	Thickness, (nm)	Lateral Dimension (µm)	
GNPs	13 - 16	200	2	

Exfoliation of GNPs

Controlled Ultrasonication Energy Method

28-day Cement Pastes and Mortars w/c/s: 0.485 OPC Type I Sand ASTM C779 GNPs: 0.15 vol%

CO₂ curing CO₂ 12% v/v (100% purity) 65% RH 74 °F (23 °C)

Quantitative evaluation of CO₂ uptake and mineralization

Macro-scale

Thermogravimetric analysis Quantitative evaluation of CO₂ uptake and mineralization

✓ OPC Mortar (M)
✓ M + GNPs exfoliated
✓ M + GNPs as received

ASTM C1872 - 18

Nano-scale

NanolR AFM (Sub-10 nm) Chemical Imaging/Mapping on GNP reinforced cement pastes

Specimens Diameter: 1.2" (30 mm) Height: 0.6" (14mm)

Thermogravimetric Analysis of 28-day OPC Mortars Moist Cured and CO₂ Cured OPC Mortars

CO₂ Uptake and Mineralization of 28-day Carbonated Specimens

CO₂ Uptake and Mineralization of 28-day Carbonated Specimens

Sub-10nm IR Spectrum of Cement Paste Moist-cured specimens

Moist-cured Cement Paste

Sub-10nm IR Spectrum of Cement Paste CO₂-cured specimens

Moist-cured Cement Paste

CO2-cured Cement Paste

Functionalization of GNPs with carboxyl and hydroxyl groups

Functionalization of GNPs with carboxyl and hydroxyl groups New Chemical Bond in FTIR

Sub-10nm IR Spectrum of GNP Reinforced Cement Paste As Received GNPs

Wavenumber (cm⁻¹)

	"As received" GNP/C-S-H in CP	Exfoliated GNP/C-S-H in CP
C=C, C=O (1640 cm ⁻¹) COOH (carboxyl) and OH (hydroxyl) attached on the GNP surface	Х	\checkmark
Si-O (980 cm ⁻¹) Silicate polymerization	0.8	0.98 († 23%)
CO ₃ ²⁻ (870 cm ⁻¹ , 1370 cm ⁻¹) CaCO ₃ (CO ₂ mineralization)	0.8 – 1.0	1.05 – 1.15 († 23%)

Exfoliated GNP/C-S-H in CP

"As received" GNP/C-S-H in CP

Conclusions

While both multilayer and tri-layer GNPs increase concrete's capacity for CO2 uptake and mineralization, highly exfoliated/few-layered functionalized GNPs are able to better enhance CO₂ uptake and mineralization.

Formation of higher amounts of CaCO₃

- 28-day CO₂ cured mortars reinforced with exfoliated tri-layer GNPs exhibit:
 - ✓ 26% higher CO₂ uptake and mineralization than OPC mortar
 - ✓ 8% higher CO₂ uptake and mineralization than mortar reinforced with "as received" GNPs
- The use of exfoliated/few-layered functionalized GNPs is crucial to provide active sites that promote the chemical reaction between CO₂ and cement hydration products and facilitate the production of CaCO₃ (mineralization)

Acknowledgements

The authors would like to acknowledge the financial support of the National Science Foundation – Partnerships for International Research and Education (PIRE) Research Funding Program "Advancing International Partnerships in Research for Decoupling Concrete Manufacturing and Global Greenhouse Gas Emissions" (NSF – PIRE – 2230747).

Advancing International Partnerships in Research for Decoupling Concrete Manufacturing and Global Greenhouse Gas Emissions

Partnerships for International Research and Education (PIRE)

Thank you!

Maria S. Konsta-Gdoutos Professor of Civil Engineering Associate Director, Center for ACM maria.konsta@uta.edu

https://cacm.uta.edu/