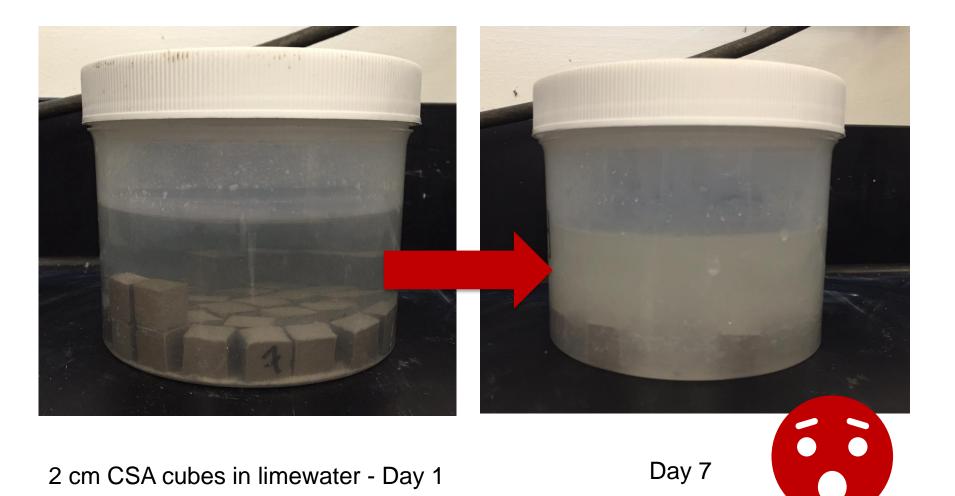
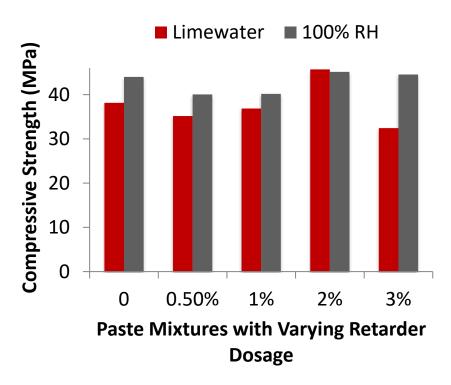
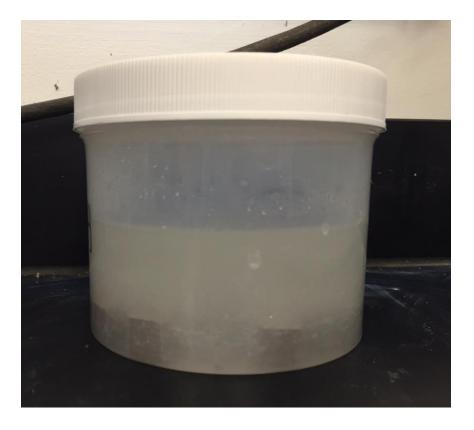


CSA Cement Curing for Optimal Hydration and Property Development

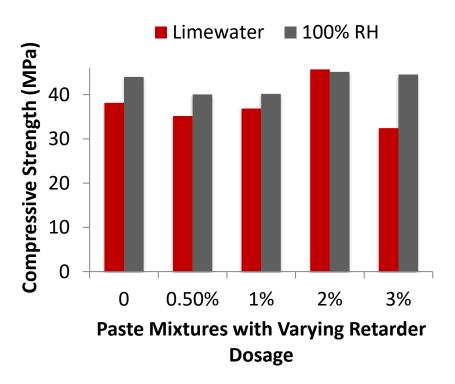
Cansu Acarturk & Lisa Burris Civil, Environmental, and Geodetic Engineering







2 cm CSA cubes in limewater - Day 1



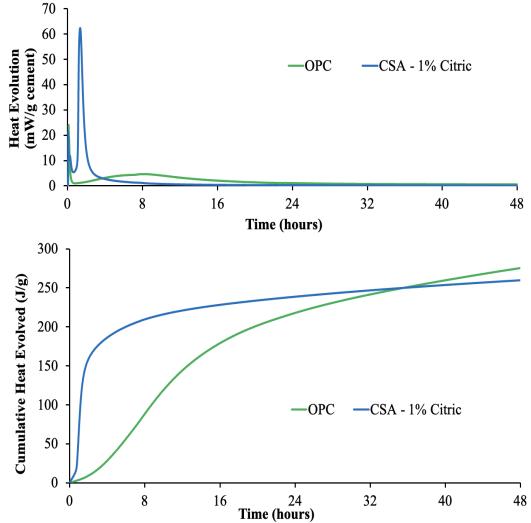
'Gelling' accompanied by strength loss

'Gelling' accompanied by strength loss

THE OHIO STATE UNIVERSITY	Phases	CSA (wt%)	OPC (wt%)
	Alite (C_3S) Belite (C_2S)	- 21.09	54.61 17.35
CCA ve ODC Undration Dracas	Brownmillerite (C ₄ AF)	7.03	12.41
CSA vs. OPC Hydration Process	Aluminate (C ₃ A)	6.69	6.38
	Calcite	2.49	-
	Anhydrite	14.97	1.54
OPC	Hemihydrate	-	4.04
	Gypsum	-	0.83
$2CS \pm 6H \rightarrow C = S = H \pm 3CH$	Ye'elimite	45.46	-
$2C_3S + 6H \rightarrow C - S - H + 3CH$	Quartz	0.23	-
alite + water → calcium + calcium silicate hydroxide hydrate			

CSA

$C_4A_3\overline{S} + 2C\overline{S} + 38H$ ye'elimite + anhydrite + wate	$ \rightarrow C_6 A \overline{S_3} H_{32} + 2A H_3 $ er \rightarrow ettringite + aluminum hydroxide
$2C_2S + 4H \rightarrow C - S - S$ belite + water \rightarrow calcium silicate hydrate	hydroxide


OPC & CSA Hydration Process Comparison

Further...

CSA hydrates MUCH faster

Do we really need 7 days for CSA curing?

Specification	Minimum required days for curing			
ACI 308	7 days			
Ohio DOT	7 days			
Florida DOT	3 days			
Texas DOT	4 days			
Illinois DOT	3 or 7 days (application dependent)			
Virginia DOT	7 days			
New York DOT	7 days			
Louisiana DOT	7 days			
California DOT	7 days			

Hypotheses:

- 1. CSA will require reduced curing periods compared to OPC.
- 2. CSA does not benefit from curing in limewater or DI water.
- 3. CSA properties can be improved using solutions containing CSA hydration product components.

Experimental Approach:

Testing: Changes in hydration: phase development Changes in Performance: Compressive strength & drying shrinkage

Samples: 2" mortar cubes and 3x4x16" beams w/c = 0.485, 0.5% citric acid retarder

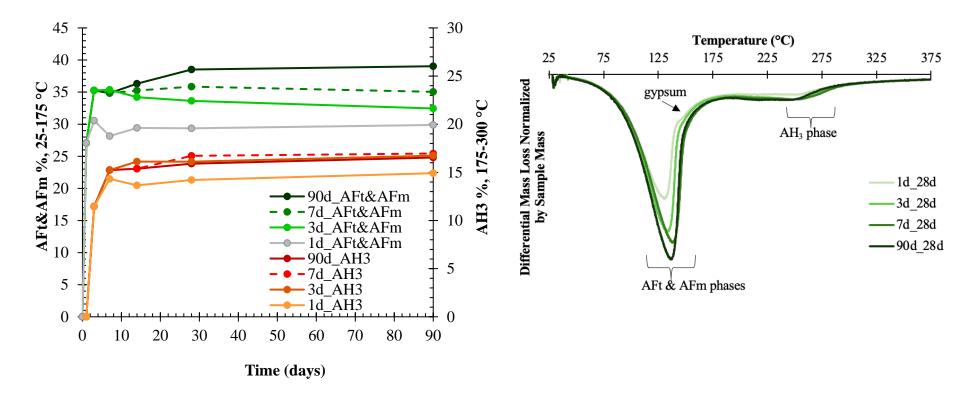
Curing:

DAYS	1	2	3	7	28	90	
OPC_7d	100% RH				50% RH		
CSA_1d	100% RH	50% RH					
CSA_2d	100%	6 RH		50% RH			
CSA_3d		100% RH			50% RH		
CSA_7d	100% RH				50% RH		
CSA_90d	100% RH						
CSA_105 °C	100% RH	105	5 °C	C 50% RH			

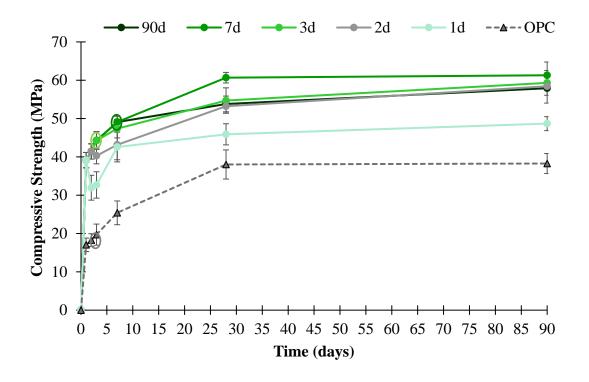
Curing duration evaluation

Curing solution evaluation

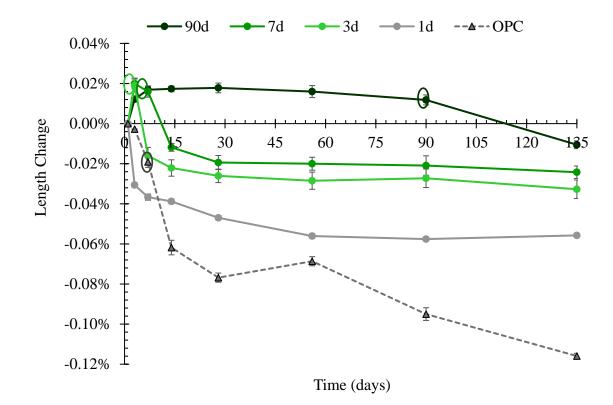
DAYS	1	2	3	7	28	90
DI	100% RH	Deionized water				
СН	100% RH	Calcium hydroxide solution				
CS	100% RH	Calcium sulfate solution				
AS	100% RH	Aluminum sulfate solution				
AN	100% RH	Aluminum nitrate solution				



Curing Duration Results


THE OHIO STATE UNIVERSITY

Hydrated Phase Development with Curing Length:

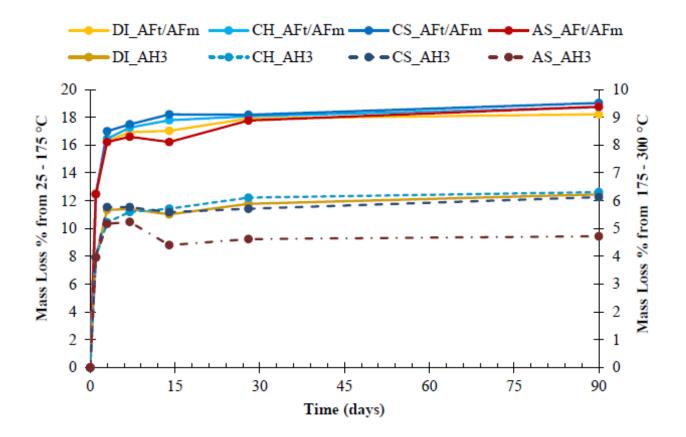

- Direct correlation between ettringite and monosulfoaluminate quantities and curing time
- 1 day curing resulted in reductions in both alumino silicates and aluminum hydroxide

Compressive Strength Development with Curing Length

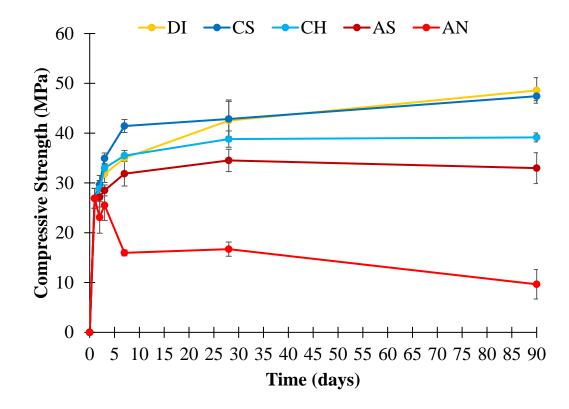
- Curing for <2 days reduced long term (90d) strength gain
- Insignificant differences between 2 – 90 day curing lengths

Drying Shrinkage with Curing Length

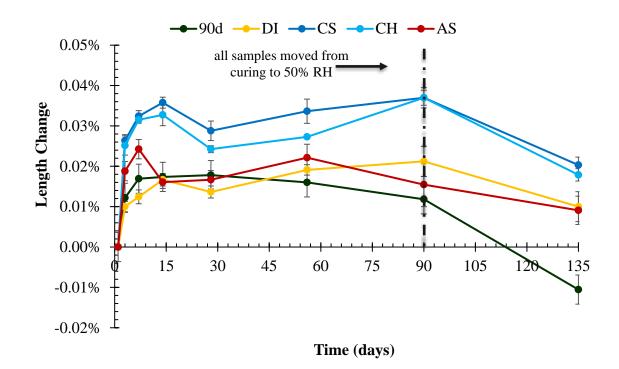
- All CSA samples showed expansive behavior when in 100% RH until removal
- Total drying shrinkage correlated inversely with curing time (more curing = less shrinkage)
- Even minimal curing with CSA samples reduced overall shrinkage extent relative to OPC



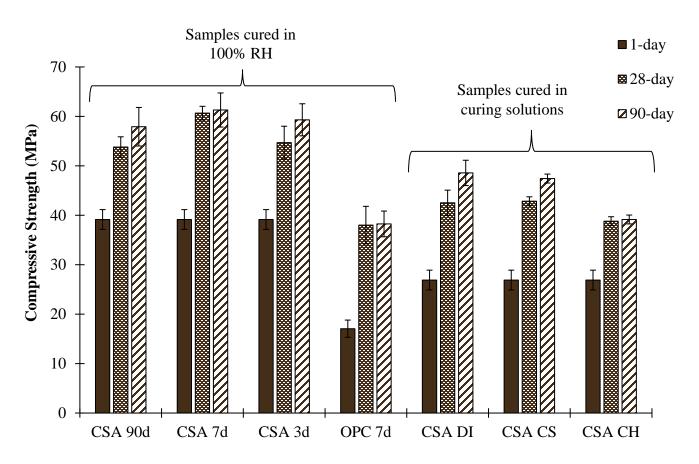
Alternative Curing Solution Results


DI water – Limewater – Calcium sulfate Aluminum sulfate – Aluminum nitrate

Hydration in Alternative Curing Solutions


Strength and Shrinkage in Alternative Curing Solutions

- Curing in aluminum solutions resulted in significant reductions in strength
- Curing in DI water or calcium sulfate solution resulted in greater strength than in limewater


DI water 90d strength:

Strength and Shrinkage in Alternative Curing Solutions

- All samples expanded in all curing solutions through 90 days.
- All samples decreased in length when moved to 50% RH after 90 days of curing.
- Curing resulted in at least short-term reductions in drying shrinkage compared to 100% RH curing
- Calcium solutions reduced shrinkage most significantly

Strength Development Curing Method Comparison

Relative to moist curing (100% RH):

DI water & calcium sulfate solution lowered 90d strength by as much as 18%.

36% strength loss when curing in limewater!

Conclusions

Hypothesis 1: CSA will require reduced curing periods compared to OPC.

- Extended curing in 100% RH is not required for CSA cement mixes beyond 3 days.
 - Samples cured for 2-3 days reached similar compressive strengths, slightly lower amount of hydration products and slight increases in drying shrinkage.

Hypothesis 2: CSA does not benefit from ponded curing in limewater or DI water.

Hypothesis 3: CSA properties can be improved using solutions with CSA hydration product components.

- Curing samples by ponding in any solution resulted in strength reductions
 - o Strength loss was minimized using DI water or calcium sulfate solution
 - o Strength loss in limewater was considerable and use of limewater should be avoided for curing CSA
 - o Aluminum solutions were very harmful to hydration and strength development
- Curing samples by ponding in any non-acidic solution resulted in shrinkage reductions
 - Shrinkage was minimized in calcium-containing solutions, but use of DI water resulted in only 0.01% more shrinkage
 - All samples cured for >1d resulted in less shrinkage than in the OPC system
- Use of solutions containing hydration process products did not increase overall hydration.

Curing Recommendations

- Curing specifications should require maximum 48 hours of wet curing for CSA concretes
- Use of curing tanks should not be permitted for CSA samples.

