#### **Temple University** College of Engineering

# Assessing the Freeze-Thaw Performance of CSA Systems

Syed Jafar Bukhari, PhD Student, Temple University Mehdi Khanzadeh, Assistant Professor, Temple University

### **Motivation**

- Alternative cementitious materials (ACMs) such as calcium sulfoaluminate cements (CSA) receiving increasing attention worldwide due to their significantly lower embodied energy and numerous attractive properties
- However, there is a lack of knowledge regarding the durability of these materials in harsh, especially cold environments
- Liability due to freeze-thaw (FT) damage to the concrete infrastructure is potentially trillions of dollars





#### **CSA Cements**

- Composed of anhydrite, ye'elimite, and belite as main mineral phase.
- The primary hydration products of CSA cements are ettringite, aluminum hydroxide, and monosulfate.
- CSA cements can be designed to exhibit limited shrinkage.



P. Alapati, 2020



#### ACI Convention, Spring 2023

## **Freeze-Thaw Damage in OPC Systems**

#### Important factors

- (a) Permeability of materials(b) Distance to an escape boundary(i.e., spacing factor & air content)
- (c) Degree of saturation



Degree of saturation





### **How About CSA Systems?**



Preliminary studies have shown that CSA systems perform differently in FT environment and against salt intrusion





Compare the FT performance of CSA systems to that of

#### **Project Objectives**

- **OPC** mixtures.
- Relate the CSA microstructure and transport properties to the FT performance







# Research Approach

Pore distribution in CSA and OPC systems

Mass transport properties

Freeze-thaw performance

### **Experimental Program**



#### Mixtures

- Cement paste and mortar samples with three different w/b were prepared (w/b= 0.40, 0.45, and 0.50).
- ✤ A belitic calcium sulfoaluminate (BCSA) cement was used.
- Volume of fine aggregate in mortar samples: 55%
- Citric acid was used as a retarder in CSA mixtures.
- Samples were sealed cured for 28 days.

### **Pore Size Distribution from Nitrogen Sorption Test**



• In CSA systems, volume of smaller mesopores (<10 nm) is higher.



## **Pore Size Distribution from Nitrogen Sorption Test**



• In CSA systems, volume of smaller mesopores (<10 nm) is higher.



#### **Porosity using Gravimetric Method**



- CSA mortar samples show higher porosity compared to OPC samples.
- The difference is higher at w/b of 0.50.



#### **Water Absorption**



CSA mortar samples (with w/b of 0.45 and 0.50) show higher secondary slope.



## **Diffusion from mCT**

Paste, 28-day diffusion





Khanzadeh et al. CBM, 2016

#### **Water Absorption**



• CSA mortar samples (with w/b of 0.45 and 0.50) show higher secondary slope.



#### **Bulk Electrical Resistivity Measurements**

- CSA samples show much higher resistivity.
- The ER change as a function of w/b is more steeper in CSA systems.





Temple

### **Bulk Electrical Resistivity Measurements**

- Formation factor values are comparable
- CSA systems show higher pore interconnectivity



Alapati et al., Designing Corrosion Resistant Systems with Alternative Cementitious Materials, *Cement*, 2022

F

ACI Convention, Spring 2023



Φ

**ACI Convention, Spring 2023** 

# 17 of 22

Temple University



<u>.</u>

## **Freeze-Thaw Performance from TMA**

#### **Paste samples**



#### **Freeze-Thaw Performance from TMA**

Temple University College of Engineering

ACI Convention, Spring 2023

**Paste samples** 

#### **ACI Convention, Spring 2023**



#### **Paste samples**







#### Conclusions



- The total pore volume is higher in CSA samples. However, the CSA samples show higher volume of smaller mesopores (<10 nm).
- The CSA mortar samples (with w/b of 0.45 and 0.50) show a higher secondary sorption rate due to higher interconnectivity of mesopores.
- Formation factor is a better indicator of interconnectivity of pores
- The CSA samples with a low w/b show a comparable FT performance (to OPC samples). However, the amount of residual strain (i.e., damage) due to FT cycles is considerably higher in 0.50 CSA samples.
- The coefficient of thermal expansion (CTE) value is higher CSA systems.

# Acknowledgements





# **Thank You!**

#### Mehdi Khanzadeh, PhD, PE

Mehdi.Khanzadeh@temple.edu

