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Research Objectives

* The primary objective of this research was to
evaluate structural integrity detailing provisions of
ACl 318-19 for cast in place perimeter beams

» Effect of bottom bar splice location along beam

* Transverse reinforcement spacing of perimeter beams in
buildings designed for Seismic Design Category A or B
(prompted by observations during tests)

" 4
e

UMassAmbherst

College of Engineering CONCRETE =i
Civil and Environmental Engineering CONVENTION




ACl 318 Section 9.7.7 Intent for Providing
Structural Integrity Reinforcement

* To prevent disproportionate collapse of large portions
of a structure after localized failure of a small portion of
the structure

 ACI 318 R9.7.7 states: “It is the intent of this section of
the Code to improve the redundancy and ductility in
structures so...that resulting damage may be localized”
[in the event of abnormal loading event].

 Ability to redistribute internal forces after local failure

* Implies capacity to maintain load-carrying capacity at large
(plastic) deformation demands (displacements and rotations)
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ACl 318-19 Structural Integrity Requirements

ACl 318-19 Section 9.7.7.1 — continuity of longitudinal
reinforcement

-Aso
-Asi Note 2
IAI/ 11
1/4 (+As1) |~ C g 9)
Single Bar / \ /
anchored with \ ‘A
Standard Hook +As1 Note 1 82
or Headed Bar
to develop fy /l/ One piece closed stiffups or two piece /I/ Interior Span
U-stirrup with 135° hook required Cap tie
for shear (typ.)

End Span m m

Notes: (1) Larger of (1/4) (+Ag1) or (1/4) (+Asz) but not less than two bars continuous
or spliced with Class B splices or mechanical or welded splices

(2) Larger of (1/6) (-As1) or (1/6) (-As2) but not less than two bars continuous
or spliced with Class B splices or mechanical or welded splices

Longitudinal reinforcement enclosed by closed
stirrups or hoops ACI 318-19 Section 25.7.1.6
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Specimen Details
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Building Prototype
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Bottom Longitudinal Bar Splice Locations

40'

=L 1
Specimen 1 i L H
C 40 7
Specimen 2 - T i
L;,-_'f
4 ft-0in.
| o L

Specimen 3 FEETTITIT T@{*FW% T
32"

[ 4

UMassAmherst

College of Engineering (@ci? cONCRETE
Civil and Environmental Engineering CONVENTION




Overall View of Test Setup
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Specimen Instrumentation

SG Instrumentation of spliced bars

A
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Laboratory Testing
Results
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Specimen 1

Civil and Environmental Engineering

0.008 in. 0.008 in
5 j \ N
(7 TN EW ISR ;
&0 /ﬂ *_\ 'x
52 kip 0060 0.008 in
50 . 30 kip
=
2 40
L -]
g 28 kup s H
=30 30 kip 1 y
T r T 51 ™
: CTT R ) (v i (4 ff el Lot ;G (07N
220 7 J A
- 0.080 i . 0.080 in
10 52 kip
0 . .
0 5 10 15 20
Center Column Vertical Displacement (in) -
5 N
{- . i [_] T k{rll r I._I'\I f
“'Jllly;jJIJ f%rfuf‘a.nr'ff_ﬂﬂxlullti J LH& -
050 m I:H:IJ:I K‘: Critical Crack
28 kip
=
UMassAmherst
College of Engineering (@ci? coNCRETE
CONVENTION




Specimen 1
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Specimen 2
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Specimen 2

g |

CTIT TN ] -, , T/
\\\//”ﬂ//j 5()3 Yol f(UJY\) Y (s \\\Qg N
B 7 /f \\ N 2

| Failure crack 0.50 in.

0.25in. 0.50 in.

0.751n.

[
UMassAmbherst
College of Engineering (@ci? coNCRETE
Civil and Environmental Engineering CONVENTION




Specimen 3
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Specimen 3
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Measured and Calculated Load-Deflection

Response
(mm)
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*Sudden drop in force
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Discussion of Testing
Results
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Moment-curvature Response used in SAP 2000
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Tests by Lew et al. e S -
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Fig. 15—Vertical load versus center-column displacement

Fig. 8—Vertical load versus center column displacement for ,
for SMF specimen.

IMF specimen.
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T by L | F
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Fig. 19—Three stages of load transfer: (a) arching action;
(b) plastic hinge formation; and (c) catenary action. (Note:
F is force in steel; F, is force in concrete; and F_ is force in
concrete and steel.)
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Simplified Progressive Collapse Model by Jian
and Zheng (2014)

Simplified Models of Progressive Collapse Response and

A
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Measured and Calculated Load-Deflection

Response
(mm)
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*Sudden drop in force
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Vertical Displacement at Center Column (in.) crack widening

UMassAmbherst : ~

College of Engineering (G coNCRETE
Civil and Environmental Engineering CONVENTION »




Critical Diagonal Crack and Stirrup Fracture —
Specimen 2
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Concrete Contribution to Shear Strength

Ny 1/3 Ny
[2,1 fc+6A]bd [8A(pw) fc+6A b, d
ACI 318-19 (22.5.5.1a) ACI 318-19 (22.5.5.1b)

Note ACI 318 equations do not consider reduction of Vc with plastic rotational demand

Ve = aﬁy\/ﬁ(O.&‘lg)

( 3.5 for 6/6, <3
Kowalsky and Priestley Yy =4 35— —(9/0 — 3) for3 < 6/6, <15
(2000) o6 for 0/6,, > 15
( 3.5 for /6, <3
2.3
3.5-—(8/6, —3) for3<6/6, <7
Priestley et al. (1994) Y = 0‘2
1.2—?(9/93,—7) for7<6/6, <15
0.6 for /6, =15
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Reduction in V_ with Rotation Demand
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Simplified Model to Estimate Rotation of
Inelastic Hinges

| South plastic hinge North plastic hinge |

|
24 in. 192 in. (typ) AN
(typ) Center plastic hinge
. est, Beam : , , : ca, | Ocar +0p"
svsnn | S [ S [oongn [ ou [an Ton T our il
Peak Load (Point A)
1 6.7 South 0.015 0.36 6.3 | 0.033 | 0.018 4.3
North 0.015 0.36 6.3 | 0.033 | 0.018 4.3
) 6 South 0.011 0.26 7.3 | 0.038 | 0.027 6.4
North 0.005 0.12 75 | 0.039 | 0.034 7.9
3 24 South 0.014 0.34 7.1 | 0.037 | 0.023 5.4
North 0.015 0.36 7.0 | 0.037 | 0.022 5.1
Diagonal Crack Widening (Point B)
South -8 _8 _8 _5§ _ 8 _8
1 13.9
North 0.029 0.70 | 13.2 | 0.069 | 0.040 9.2
) 158 South 0.018 0.43 | 154 | 0.080 | 0.062 14.3
' North 0.008 0.19 | 156 | 0.081 | 0.073 16.8 -
UMassAmbherst 3 105 South 0.019 0.46 | 10.0 | 0.052 | 0.033 7.8 N
' North 0.019 0.46 | 10.0 | 0.052 | 0.033 7.8 ; i
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Conclusions

* Bottom longitudinal bar splice location did not influence the
behavior of the specimens tested in this research.

e Catenary behavior of the specimens was not developed because
of loss of load-carrying capacity due to premature failure in shear
at moderate rotation demands.

* Models that include reduction in V_ with increased rotational
demand provided reasonable estimates of the rotations at loss of
V. contribution to shear strength for the beams tested in this
research.

* Steep diagonal cracking after loss of V_ resulted in low residual
shear strength and subsequent fracture of closed stirrups. A 45-
degree truss model did not correctly estimate residual shear

strength.
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Questions?
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