Laboratory Evaluation of Perimeter Beam Integrity Detailing Requirements of ACI 318-19

Sergio F. Breña University of Massachusetts Amherst

Jorge Rivera Cruz US Army Corps of Engineers

UMassAmherst

Outline of Presentation

- Background and motivation for the research
- Specimen details
- Laboratory testing results
- Discussion of testing results
- Conclusions

UMassAmherst

Background and Motivation for the Research

UMassAmherst

Research Objectives

- The primary objective of this research was to evaluate structural integrity detailing provisions of ACI 318-19 for cast in place perimeter beams
 - Effect of bottom bar splice location along beam
 - Transverse reinforcement spacing of perimeter beams in buildings designed for Seismic Design Category A or B (prompted by observations during tests)

UMassAmherst

ACI 318 Section 9.7.7 Intent for Providing Structural Integrity Reinforcement

- To prevent disproportionate collapse of large portions of a structure after localized failure of a small portion of the structure
- ACI 318 R9.7.7 states: "It is the intent of this section of the Code to improve the redundancy and ductility in structures so...that resulting damage may be localized" [in the event of abnormal loading event].
 - Ability to redistribute internal forces after local failure
 - Implies capacity to maintain load-carrying capacity at large (plastic) deformation demands (displacements and rotations)

UMassAmherst

ACI 318-19 Structural Integrity Requirements

ACI 318-19 Section 9.7.7.1 – continuity of longitudinal reinforcement

stirrups or hoops ACI 318-19 Section 25.7.1.6

UMassAmherst

Specimen Details

UMassAmherst

Building Prototype

UMassAmherst

College of Engineering Civil and Environmental Engineering

UMassAmherst

Bottom Longitudinal Bar Splice Locations

Overall View of Test Setup

COLUMN

UMassAmherst

Specimen Instrumentation

SG Instrumentation of spliced bars

Laboratory Testing Results

UMassAmherst

UMassAmherst

UMassAmherst

UMassAmherst

UMassAmherst

UMassAmherst

UMassAmherst

Measured and Calculated Load-Deflection Response

*Sudden drop in force corresponds to diagonal crack widening

UMassAmherst

Discussion of Testing Results

UMassAmherst

Moment-curvature Response used in SAP 2000 Analysis

Assumes gradual (not sudden) drop in strength to allow catenary behavior to develop

UMassAmherst

Tests by Lew et al. (2014)

2'-10'

17'-2"

Fig. 15—Vertical load versus center-column displacement for SMF specimen.

2'-10"

2'-10"

17'-2"

UMassAmherst College of Engineering

Civil and Environmental Engineering

IMF specimen.

Fig. 8—Vertical load versus center column displacement for

Tests by Lew et al. (2014)

Fig. 19—Three stages of load transfer: (a) arching action; (b) plastic hinge formation; and (c) catenary action. (Note: F_s is force in steel; F_c is force in concrete; and $F_{c,s}$ is force in concrete and steel.)

UMassAmherst

Simplified Progressive Collapse Model by Jian and Zheng (2014) $P_{\rm u}^{\rm c}$ D

Simplified Models of Progressive Collapse Response and **Progressive Collapse-Resisting Capacity Curve of RC Beam-Column Substructures**

Hou Jian, Ph.D.¹; and Yang Zheng, Ph.D.²

J. Perform. Constr. Facil., DOI: 10.1061/(ASCE)CF.1943-5509.0000492.

SMF Specimen (Lew et al.)

 P_{y}^{c} $P_{\rm p}^{\rm b}$

 $P_{\rm y}^{\rm b} \ P_{\rm u}^{\rm b}$

Ο $v_{\rm v}^{\rm b}$

Bean

\$tage

 $v_{\rm p}^{\rm b}$

Transient

stage

 $v_{\rm u}^{\rm b}$

CONVEN

E

 $v_{\rm n}^{\rm c}$

Catenary

stage

 v_{v}^{c}

UMassAmherst

Measured and Calculated Load-Deflection Response

*Sudden drop in force corresponds to diagonal crack widening

UMassAmherst

Critical Diagonal Crack and Stirrup Fracture – Specimen 2

UMassAmherst

Concrete Contribution to Shear Strength

$$V_{c} = \left[2\lambda \sqrt{f_{c}'} + \frac{N_{u}}{6A_{g}} \right] b_{w} d \qquad V_{c} = \left[8\lambda (\rho_{w})^{1/3} \sqrt{f_{c}'} + \frac{N_{u}}{6A_{g}} \right] b_{w} d$$

ACI 318-19 (22.5.5.1a) ACI 318-19 (22.5.5.1b)

Note ACI 318 equations do not consider reduction of Vc with plastic rotational demand

$$V_{c} = \alpha \beta \gamma \sqrt{f_{c}'} (0.8A_{g})$$
Kowalsky and Priestley
(2000)
$$\gamma = \begin{cases}
3.5 & \text{for } \theta/\theta_{y} \leq 3 \\
3.5 - \frac{2.9}{12} (\theta/\theta_{y} - 3) & \text{for } 3 < \theta/\theta_{y} < 15 \\
0.6 & \text{for } \theta/\theta_{y} \geq 15
\end{cases}$$
Priestley et al. (1994)
$$\gamma = \begin{cases}
3.5 & \text{for } \theta/\theta_{y} \leq 3 \\
3.5 - \frac{2.3}{4} (\theta/\theta_{y} - 3) & \text{for } 3 < \theta/\theta_{y} \leq 7 \\
1.2 - \frac{0.6}{8} (\theta/\theta_{y} - 7) & \text{for } 7 < \theta/\theta_{y} < 15 \\
0.6 & \text{for } \theta/\theta_{y} \geq 15
\end{cases}$$

UMassAmherst

Reduction in V_c with Rotation Demand

Simplified Model to Estimate Rotation of Inelastic Hinges

College of Engineering Civil and Environmental Engineering

[§]Instrument malfunction; $*\theta_D = 0.0008 \text{ rad}$, $\theta_y = 0.0044 \text{ rad}$

Conclusions

- Bottom longitudinal bar splice location did not influence the behavior of the specimens tested in this research.
- Catenary behavior of the specimens was not developed because of loss of load-carrying capacity due to premature failure in shear at moderate rotation demands.
- Models that include reduction in V_c with increased rotational demand provided reasonable estimates of the rotations at loss of V_c contribution to shear strength for the beams tested in this research.
- Steep diagonal cracking after loss of V_c resulted in low residual shear strength and subsequent fracture of closed stirrups. A 45degree truss model did not correctly estimate residual shear strength.

UMassAmherst

Acknowledgements

- CRSI for providing a graduate student fellowship
- Northeast Alliance for Graduate Education and the Professoriate
- Gerdau Steel for donating reinforcing steel used in the specimens
- The late Robert B. Brack for his longstanding support of the CEE program at UMass

UMassAmherst

Questions?

UMassAmherst