

A Systems Approach for Ensuring Carbon Neutral Constructions and Improving Construction Productivity

Professor P.A. Muhammed Basheer

PhD, DSc, FREng, FIAE, FICE, FIStructE, FACI, FICT, FIAAM, FIMMM, FRILEM, CEng University of Leeds

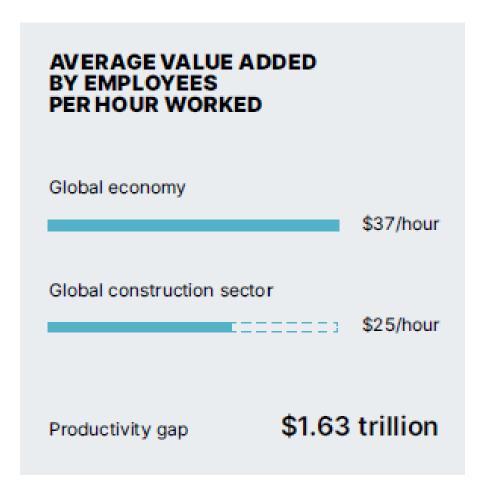
p.a.m.basheer@leeds.ac.uk

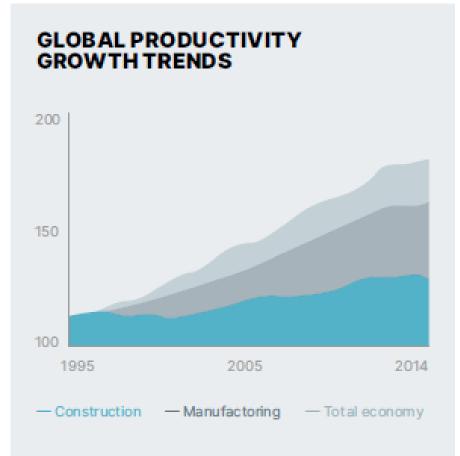
Objectives of the Talk

To demonstrate how construction productivity and sustainability could be improved using a Systems approach.

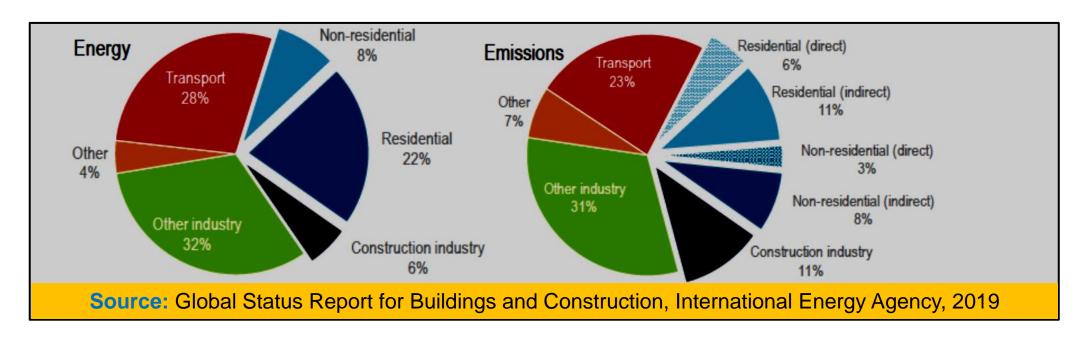
To introduce a range of research and innovation in construction materials and technologies which could improve construction productivity and carbon footprint.

- > Productivity and environmental challenges in the construction industry
- > Justifications for a Systems approach to deal with the challenges
- > Building productivity and sustainability through technological innovations
 - ✓ ICE Low Carbon Concrete Routemap
 - ✓ Precasting and 3D printing
 - ✓ Construction robotics, Artificial Intelligence & construction informatics
 - ✓ Structural Health Monitoring and whole life management of infrastructure
- Concluding remarks and recommendations




- > Productivity and environmental challenges in the construction industry
- > Justifications for a Systems approach to deal with the challenges
- > Building productivity and sustainability through technological innovations
 - ✓ ICE Low Carbon Concrete Routemap
 - ✓ Precasting and 3D printing
 - ✓ Construction robotics, Artificial Intelligence & construction informatics
 - ✓ Structural Health Monitoring and whole life management of infrastructure
- > Concluding remarks and recommendations

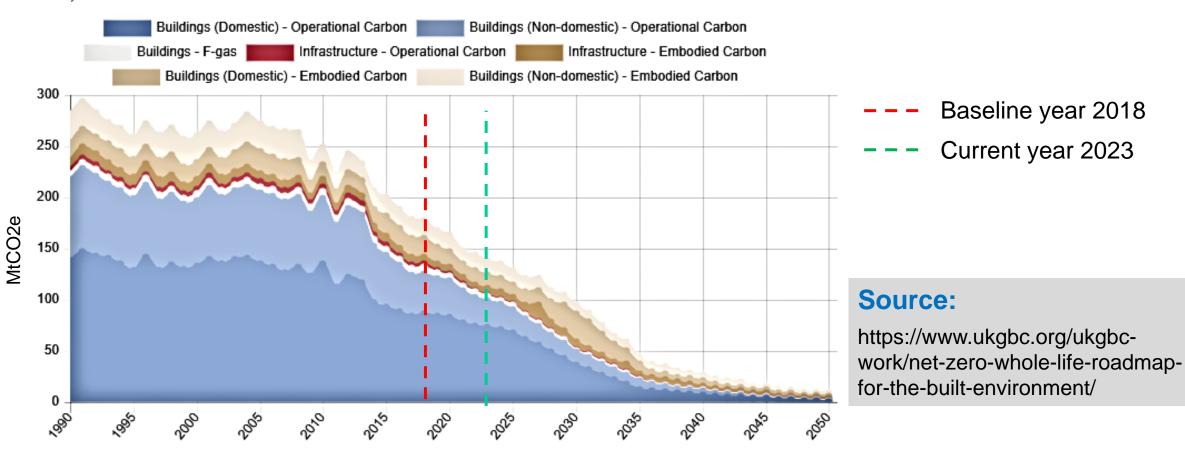
The Productivity Gap – A Historic Fact


Sources:

McKinsey & Company, 2017; Disperse, The new approach to Building Productivity, 2020

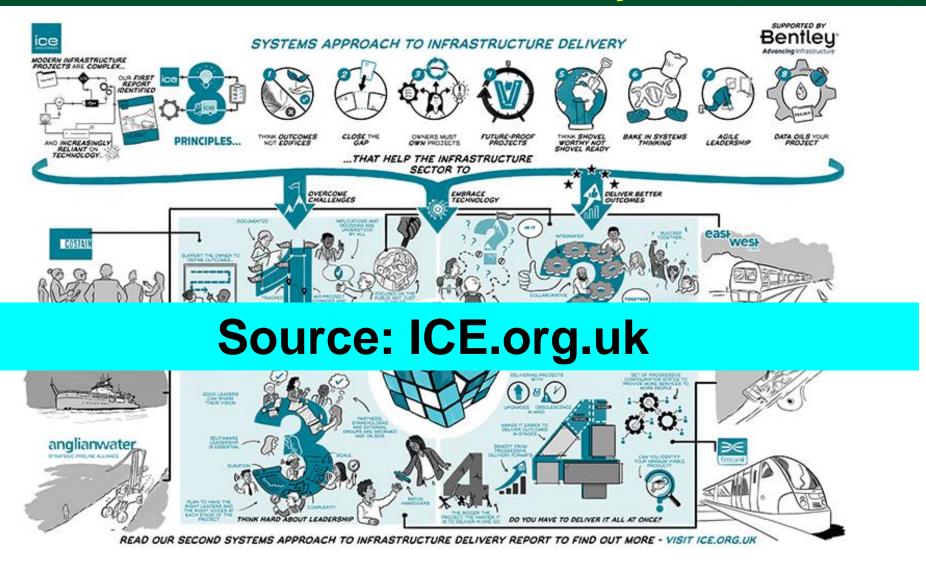
Global Share of Buildings and Construction Final Energy and Emissions, 2018

Buildings and construction sector:

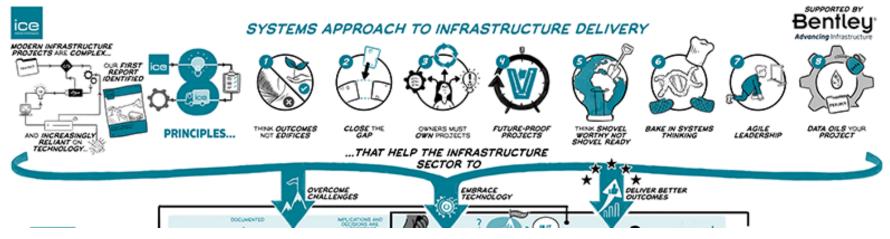

- ❖ 36 % of final energy use
- ❖ 39% of energy and process-related carbon dioxide emissions in 2018
- ❖ 11% of which is from manufacturing building materials and products such as steel, cement (~8%) and glass.

Net Zero Whole Life Carbon Roadmap for the Built Environment

Historic (1990-2018) built environment emissions (MtCO2e), alongside projected emissions from the built environment (2018 through to 2050)



- > Productivity and environmental challenges in the construction industry
- > Justifications for a Systems approach to deal with the challenges
- > Building productivity and sustainability through technological innovations
 - ✓ ICE Low Carbon Concrete Routemap
 - ✓ Precasting and 3D printing
 - ✓ Construction robotics, Artificial Intelligence & construction informatics
 - ✓ Structural Health Monitoring and whole life management of infrastructure
- > Concluding remarks and recommendations



- > Systems thinking embraces the idea that the whole is more important than the sum of its parts; that is, understanding of how all of the component parts of a project work together to meet a common objective.
- Systems engineering is the application of systems thinking to engineering design and management. It helps different teams working on individual components of projects to stay aligned to a common goal.
- Systems integration is the practical task of bringing together all of the components and taking them into service as a single, fully-functional system.
- The 'extended system' refers to the socio-political environment in which a project is to be delivered and the many – often hundreds – of stakeholders who can influence it.

Overcome challenges

Embrace technology

Deliver Better outcomes

Strategic Principles

- 1) Think outcome, not edifices
- 2) Close the gap
- 3) Owners must own projects
- 4) Future-proof projects
- 5) Think shovel worthy, not shovel ready
- 6) Bake in systems thinking
- 7) Agile leadership
- 8) Data oils your project

A SYSTEMS APPROACH WILL TRANSFORM HOW WE:

1) Conceive

2) Plan

3) Deliver

&

4) Operate

Successful Case Studies in the UK

- 1) Tideway
- 2) British Antarctic Survey's Infrastructure Modernisation Programme
- 3) Crossrail
- 4) East West Rail
- 5) Anglian Water's Strategic Pipeline Alliance
- 6) Costain's systems approach capability

Cross-cutting lessons

- 1) Keep the end in mind throughout the project
- 2) Ensure we really are all in this together
- 3) Think hard about leadership
- 4) Do you have to deliver it all at once?

Principal Lesson

"Construction's traditional, 'heroic' style of leadership is not fit for purpose for modern projects – the sector needs to adopt leadership models that spread authority and empower highly competent individuals."

- > Productivity and environmental challenges in the construction industry
- > Justifications for a Systems approach to deal with the challenges
- > Building productivity and sustainability through technological innovations
 - ✓ ICE Low Carbon Concrete Routemap
 - ✓ Precasting and 3D printing
 - ✓ Construction robotics, Artificial Intelligence & construction informatics
 - ✓ Structural Health Monitoring and whole life management of infrastructure
- > Concluding remarks and recommendations

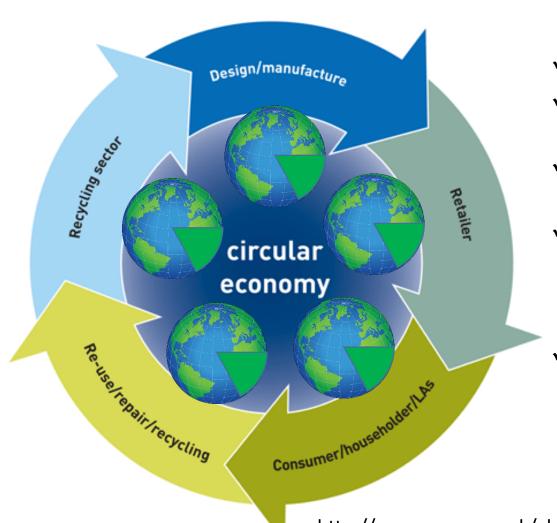
Institution of Civil Engineers Low Carbon Concrete Routemap

Goal: Net-zero concrete by 2050

Strategic focus areas:

- Reduce the amount of concrete
 + rebar used
- Reduce the carbon intensity of concrete/rebar
- Sequester or offset the residual carbon

Institution of Civil Engineers Low Carbon Concrete Routemap


Idealised Reduction Rate for Embodied Carbon in Concrete

Benefits of the Circular Economy

- ✓ Reduce waste
- ✓ Drive greater resource productivity
- ✓ Deliver a more competitive economy
- ✓ Position to better address emerging resource security/scarcity issues in the future
- ✓ Help reduce the environmental impacts of our production and consumption.

http://www.wrap.org.uk/about-us/about/wrap-and-circular-economy

- > Productivity and environmental challenges in the construction industry
- > Justifications for a Systems approach to deal with the challenges
- > Building productivity and sustainability through technological innovations
 - ✓ ICE Low Carbon Concrete Routemap
 - ✓ Precasting and 3D printing
 - ✓ Construction robotics, Artificial Intelligence & construction informatics
 - ✓ Structural Health Monitoring and whole life management of infrastructure
- > Concluding remarks and recommendations

Precasting to Facilitate Growth and Reduce the Carbon Footprint

Flexi-Arch for Small to Medium Span Bridges

Tievenameena Bridge in Northern Ireland

Source: Macrete Precast Concrete Engineering, Northern Ireland

- Successfully constructed spans up to 18m
- Highly cost-effective and durable
- Instrumented bridges facilitate performance monitoring in service

Precasting to Facilitate Growth and Reduce the Carbon Footprint

Facilitating Factors

- High strength, high performance concrete
- Advances in admixture technologies
- Advances in fibre reinforced concrete
- Advances in prestressed concrete
- Advances in structural connections
- Better skilled construction workforce
- Introduction of whole life cost and life cycle analysis
- ❖ Better awareness of (concern for) sustainability

Practical Application of 3DPC

3D printed building in Dubai (2019)

Source: businessinsider.com

Facilitating Factors

- Advances in materials technologies
- Building Information Models,
 Construction Robotics, Artificial
 Intelligence and construction informatics

3D printed neighbourhood in Houston, Texas (2022)

Source: BBC

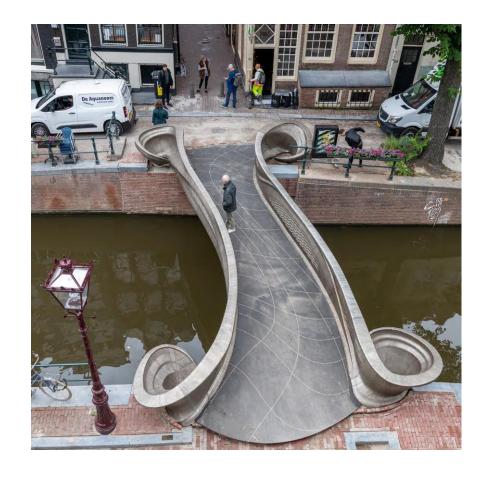
Features

- ❖ The structure is built directly on-site
- Could use local materials
- Efficient in insulation to reduce energy consumption

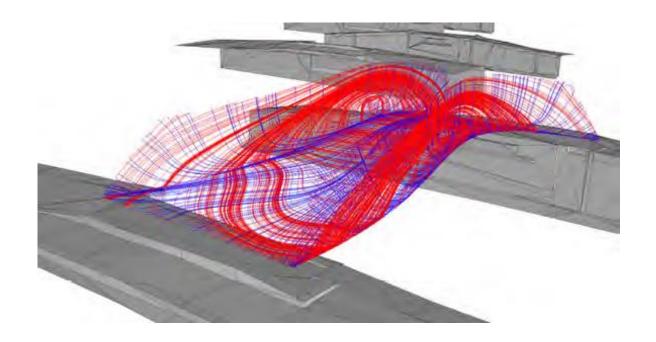
Practical Application of 3DPC

Comparison Between Traditional Concrete Manufacturing Procedure and 3D Printing

- ✓ Free from formwork
- ✓ Less labour
- ✓ Saving in construction time
- ✓ Better working environment
- ✓ Less construction wastes
- ✓ Reducing risk of construction
- ✓ Reducing energy consumption
- ✓ Reducing the cost.....



- > Productivity and environmental challenges in the construction industry
- > Justifications for a Systems approach to deal with the challenges
- > Building productivity and sustainability through technological innovations
 - ✓ ICE Low Carbon Concrete Routemap
 - ✓ Precasting and 3D printing
 - ✓ Construction robotics, Artificial Intelligence & construction informatics
 - ✓ Structural Health Monitoring and whole life management of infrastructure
- Concluding remarks and recommendations



MX3D Bridge, Amsterdam, Netherlands

The world's first robot-printed steel bridge pushes the boundaries of 3D design:

Stijn Joosten, Shibo Ren, Paul van Horn, Mathew Vola

Source: The Arup Journal, Issue 1, 2022

The New Normal: Construction Robotics UNIVERSITY OF LEEDS

Market Drivers

- High level of construction and growth expansion activities
- Unsafe environment, injuries to labour
- Uncertainties, such as COVID-19 Pandemic

Typical Construction Activities Using Robotics

- ✓ Structural demolition
- ✓ Bricklaying
- ✓ Assembling prefabricated components
- ✓ Welding arms
- ✓ Construction of road pavements
- ✓ Unlocking of design possibilities
- ✓ Aerial surveys

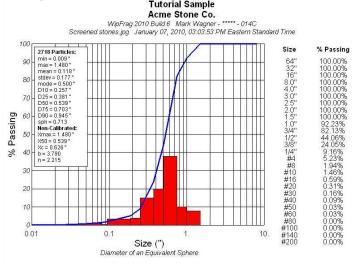
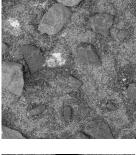
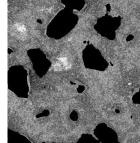

Virtual Sieve Analysis

Image based characterisation of sand/gravel/concrete

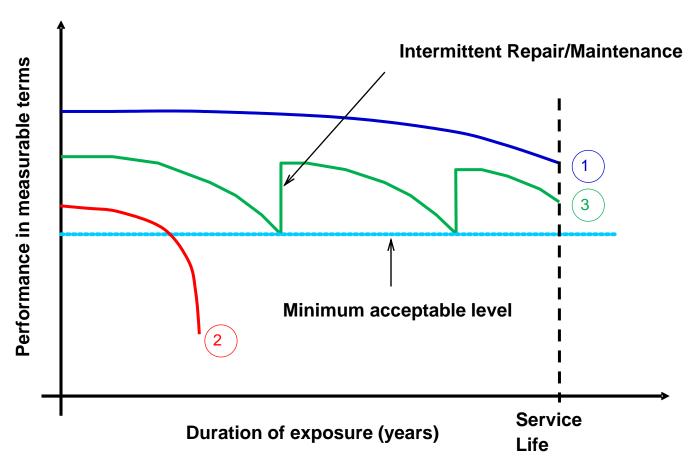

Source: Murtagh, F., et al. (2004), British patent application No. 0408632.8



Optical Granulometry

Benefits

- Better understanding of the raw materials while they are in the conveyor belt in plants
- Reduced energy demand due to machine controlled characterisation of materials recycled raw materials
- Increased packing density concrete
- Reduced cement consumption concrete/asphalt
- Greater quality control and confidence



- > Productivity and environmental challenges in the construction industry
- > Justifications for a Systems approach to deal with the challenges
- > Building productivity and sustainability through technological innovations
 - ✓ ICE Low Carbon Concrete Routemap
 - ✓ Precasting and 3D printing
 - ✓ Construction robotics, Artificial Intelligence & construction informatics
 - ✓ Structural Health Monitoring and whole life management of infrastructure
- > Concluding remarks and recommendations

Rationale for SHM

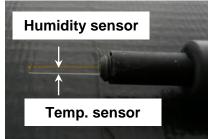
- > Early age detection of problems
- > Timely intervention and management of infrastructure

An Example of SHM Project

Hangzhou Bay and the Bridge

Hangzhou Bay bridge connects Jiaxing and Ningbo municipalities of Zhejiang province, China.
35.6km (22 mile) long.
Wave height 9m, wind speed >30mph.

Monitoring station located at the service centre


Sensors Used in Projects

Fibre Optic Sensors

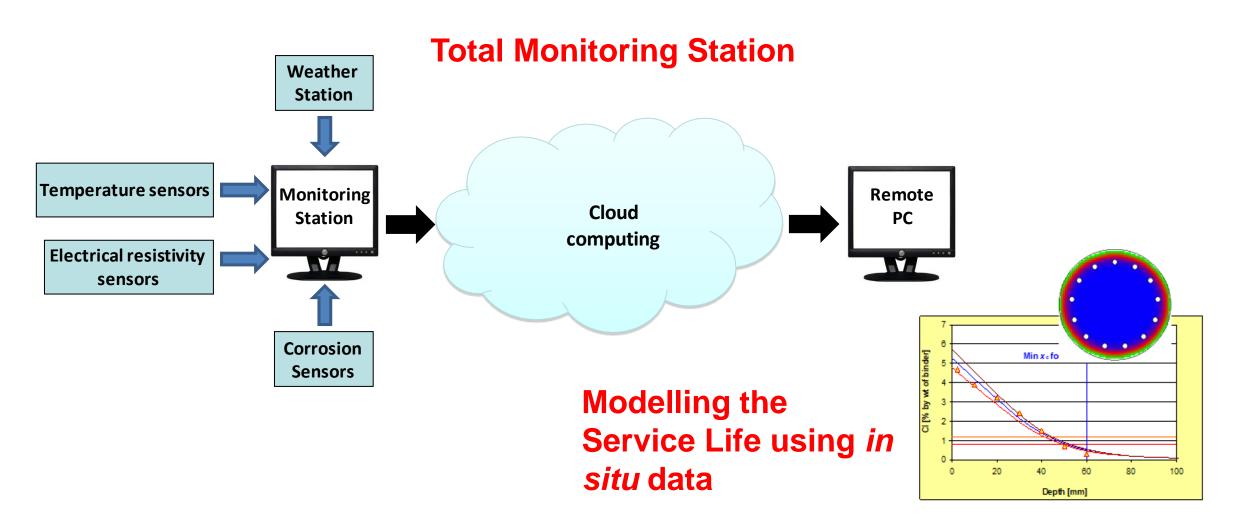
- Temperature
- RH
- pH
- Chlorides
- Strain

Humidity and Temperature

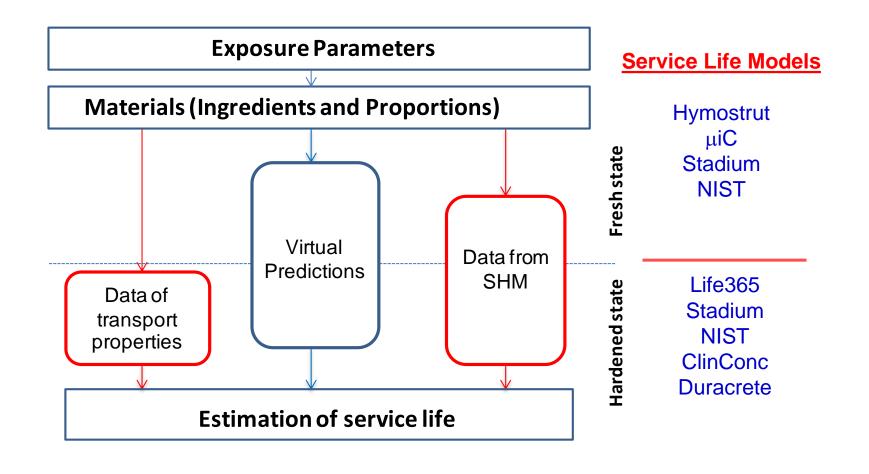
pH and Chloride

Electrical Resistivity Sensors

- Moisture movement
- Chloride ingress
- Carbonation
- Corrosion

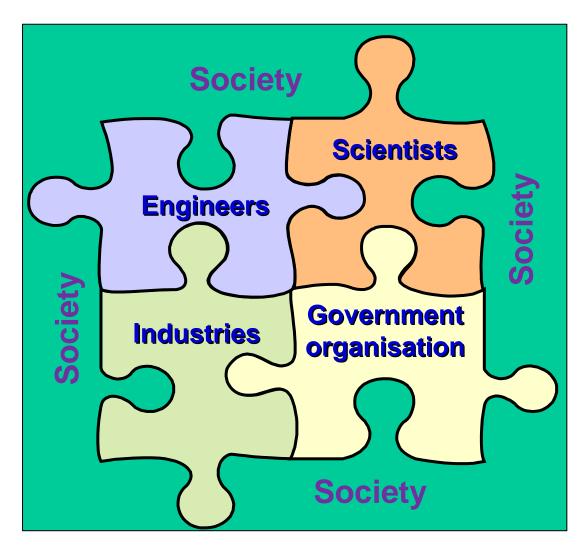


Data Collection and Modelling



Models for Predicting the Performance

UNIVERSITY OF LEEDS



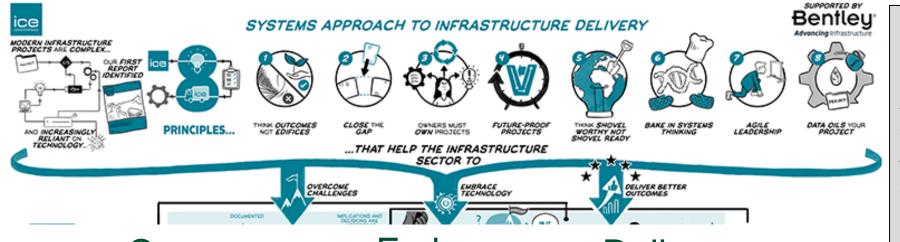
- > Productivity and environmental challenges in the construction industry
- > Justifications for a Systems approach to deal with the challenges
- > Building productivity and sustainability through technological innovations
 - ✓ ICE Low Carbon Concrete Routemap
 - ✓ Precasting and 3D printing
 - ✓ Construction robotics, Artificial Intelligence & construction informatics
 - ✓ Structural Health Monitoring and whole life management of infrastructure
- Concluding remarks and recommendations

Stakeholders for Sustainable and Productive Constructions

Key Challenge

Bring together relevant stakeholders responsible for sustainable and productive constructions

AND


Build on this to develop practical approaches to deal with sustainability and productivity

By resorting to a Systems approach.

Systems Approach to Productivity and Sustainability

Overcome challenges

Embrace technology Deliver Better outcomes

Strategic Principles

- 1) Think outcome, not edifices
- 2) Close the gap
- 3) Owners must own projects
- 4) Future-proof projects
- 5) Think shovel worthy, not shovel ready
- 6) Bake in systems thinking
- 7) Agile leadership
- 8) Data oils your project

Source: ICE.org.uk

A SYSTEMS APPROACH WILL TRANSFORM HOW WE:

- 1) Conceive
- 2) Plan
- 3) Deliver &
- 4) Operate

The systems approach could be applied to improve also the productivity and sustainability of civil infrastructure projects.

Thank you; Any Questions?

Email: p.a.m.basheer@leeds.ac.uk

© Copyright by the speaker