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HIGHLY DUCTILE CONCRETE MATERIALS
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GROWTH OF HPFRCCS: EXAMPLE UHPC IN BRIDGES
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▪ UHPC has grown substantially in 

bridge construction

▪ What are the obstacles preventing 

growth in seismic design?

Adapted from FHWA (2020)



REPRESENTATIVE EXPERIMENTAL SEISMIC RESEARCH

1. High deformation capacity in 

beams and columns (Parra-

Montesinos and Chompreda, 2007; Frank 

et al. 2015)

2. High Shear and Bending 

deformations (Zheng, 2016)

3. Reduce transverse 

reinforcement requirement 

(Lequesne, 2010)

4. Structural fuse (Oslen, 2011).
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ALTERNATIVE FAILURE MECHANISMS IN FLEXURE

Adapted from Bandelt and Billington (2016), Shao and Billington (2019)
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TENSILE RESPONSE OF REINFORCED ELEMENTS

Adapted from Moreno et al. (2014), Bandelt and Billington (2016)

Reinforced HPFRCCs restrain splitting cracks better than reinforced concrete in 

tension stiffening experiments

Material Concrete HPFRCC-1 HPFRCC-2
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FAILURE MECHANISMS IN REINFORCED COMPONENTS
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FAILURE PATH IN REINFORCED COMPONENTS

Adapted from Shao and Billington (2019) 8

Failure after crack localization

Failure after crushing/Reinf. fracture×

𝝎 =
𝑆𝑡𝑒𝑒𝑙 𝑠𝑡𝑟𝑎𝑖𝑛 ℎ

𝐹𝑖𝑏𝑒𝑟 − 𝑏𝑟𝑖𝑑𝑔𝑖𝑛𝑔 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦

Steel strain-hardening capacity

HPFRCC tensile capacity 



SEISMIC SYSTEM ANALYSIS
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R/C HINGE MODELS DON’T WORK WITH R/HPFRCCS

10

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

θ
u

, 
P

a
u

la
y
 a

n
d

 P
ri

e
s
tl

e
y
 1

9
9
2
 [

ra
d

]

θu,Experimental [rad]

C-UHPC

C-ECC

C-HPFRC

M-UHPC

M-ECC

ϴu,Experimental [rad]

ϴ
u

,P
a
u

la
y

a
n

d
 P

ri
e
s
tl

e
y

 1
9
9

2
[r

a
d

]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

θ
u

, 
P

a
n

a
g

io
ta

k
o

s
 2

0
0
1
 [

ra
d

]

θu,Experimental [rad]

C-UHPC

C-ECC

C-HPFRC

M-UHPC

M-ECC

ϴu,Experimental [rad]

ϴ
u

,P
a

n
a
g

io
ta

k
o

s
a
n

d
 F

a
rd

is
2
0

0
1

[r
a

d
]

▪ Traditional R/C 
rotational 
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failure modes, 
ductility, 
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Pokhrel and Bandelt (2019)



RC MODEL DEVELOPMENT
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AN ALTERNATIVE APPROACH FOR R/HPFRCCS
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SEISMIC COMPONENT ANALYSIS
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SEISMIC SYSTEM ANALYSIS
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SEISMIC SYSTEM ANALYSIS
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(a) RC Frame (b) Case1-HPFRCC Frame (c) Case2-HPFRCC Frame

Y-axis: Earthquake intensity

X-axis: System deformation

Tariq et al. (2021)  



SEISMIC SYSTEM ANALYSIS

▪ When increase in Mn was not considered, structure was 47% more likely 
to collapse compared to R/C under maximum considered earthquake

▪ When re-engineered to account for unique material properties, structure was 
38% less likely to collapse compared to R/C under MCE

(a) RC Frame (c) Case2-HPFRCC Frame(b) Case1-HPFRCC Frame

Tariq et al. (2021)  17



FRAME CONFIGURATIONS
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FRAME CONFIGURATIONS
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PERFORMANCE OF FRAME CONFIGURATIONS

Tariq et al. (2023)  20

▪ The probability of collapse given a 2% in 50-

year earthquake (P[C|2/50]) was 20% lower, 

on average, in R/HPFRCC frames

▪ The mean annual frequency of collapse 

was (lcol) 26% lower, on average in 

R/HPFRCC frames



CONCRETE VOLUME AND REINFORCEMENT TONNAGE

Tariq et al. (2023)  

Reduction in Concrete Volume Reduction in Rebar Weight

21



LIMITATIONS OF WORK TO DATE

▪ Limited experimental data on members with axial loading

▪ System-level analysis of structures with materials in components 

beyond beams

▪ Other variables

o Effectiveness of various materials

o Cost

22



ONGOING PROJECT SUMMARY
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PRELIMINARY INSIGHTS – AXIAL LOAD EFFECTS

24

ALR of 25%

ALR of 20%

ALR of 15%

ALR of 10%

ALR of 5%

ALR of 0% 

Rebar fracture 

Crushing failure 

ALR = Axial Load Ratio

▪ Axial loading relieves tensile strains in reinforcement

▪ Axial load can increase deformation capacity



PRELIMINARY INSIGHTS – ROTATIONAL CAPACITY
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(Haselton et al. 2016)
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▪ In reinforced concrete, axial load ratio is assumed to reduce rotational capacity

▪ In reinforced HPFRCCs, axial load ratio can increase rotational capacity

Reinforced Concrete Reinforced HPFRCC



SUMMARY

▪ UHPC and other HPFRCCs have unique failure modes 

necessitating a need for new models in seismic analysis and 

design

▪ There is significant potential to improve life safety and 

reduce damage through these materials when properly 

engineered

▪ New on-going work to understand a broader set of seismic 

systems with UHPC and other HPFRCCs
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