SEISMIC RESPONSE AND DESIGN CONSIDERATIONS OF STRUCTURAL

COMPONENTS AND SYSTEMS USING HIGHLY DUCTILE
CONCRETE MATERIALS
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HIGHLY DUCTILE CONCRETE MATERIALS
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GROWTH OF HPFRCCs: ExaMPLE UHPC IN BRIDGES
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REPRESENTATIVE EXPERIMENTAL SEISMIC RESEARCH
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ALTERNATIVE FAILURE MECHANISMS IN FLEXURE
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TENSILE RESPONSE OF REINFORCED ELEMENTS

Reinforced HPFRCCs restrain splitting cracks better than reinforced concrete In
tension stiffening experiments T
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FAILURE MECHANISMS IN REINFORCED COMPONENTS
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FAILURE PATH IN REINFORCED COMPONENTS
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SEISMIC SYSTEM ANALYSIS
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R/C HINGE MODELS DON’T WORK WITH R/HPFRCCs
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RC MODEL DEVELOPMENT

= Can we follow the process for
model development from our
knowledge for reinforced
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AN ALTERNATIVE APPROACH FOR R/HPFRCCs
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SEISMIC COMPONENT ANALYSIS
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DESIGN ILLUSTRATION OF 4 STORY FRAME

(a) RC Frame (b) Casel-HPFRCC Frame (c) Case2-HPFRCC Frame
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SEISMIC SYSTEM ANALYSIS
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SEISMIC SYSTEM ANALYSIS

8 (a) RC Frame

7_

6_

(6)]

Sa(T1)lSaMCER(T1)
AN

3_

———
2 —
1_
0 I 1 I I
0 2 4 6 8

Story Drift Ratio[%]

Y-axis: Earthquake intensity
X-axis: System deformation

sa(T,)/Sa, . (T,)

8

7_

6_

(6)

N

w

N

(b) Case1-HPFRCC Frame

Story Drift Ratio[%)]

Sa(T,)/Sa, .. (T.)

8

\'

(0))

($)]

N

w

N

-_—
T

o

Il matslab Tariq et al. (2021)

materials and structures
laboratory at NJIT

(c) Case2-HPFRCC Frame

o

Story Drift Ratio[%]



SEISMIC SYSTEM ANALYSIS

(a) RC Frame (b) Casel-HPFRCC Frame (c) Case2-HPFRCC Frame
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Minor Moderate S|gn|f|can CoIIapse ’

When increase in M, was not considered, structure was 47% more likely
to collapse compared to R/C under maximum considered earthquake

When re-engineered to account for uniqgue material properties, structure was
38% less likely to collapse compared to R/C under MCE
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FRAME CONFIGURATIONS
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FRAME CONFIGURATIONS
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PERFORMANCE OF FRAME CONFIGURATIONS

. The probability of collapse given a 2% in 50-
year earthquake (P[C|2/50]) was 20% lower,

on average, In R/ HPFRCC frames

. The mean annual frequency of collapse
was (4.,) 26% lower, on average In

R/HPFRCC frames

1171
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CONCRETE VOLUME AND REINFORCEMENT TONNAGE

Reduction in Concrete Volume Reduction in Rebar Weight
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LIMITATIONS OF WORK TO DATE

Limited experimental data on members with axial loading

. System-level analysis of structures with materials in components
beyond beams

. Other variables
o Effectiveness of various materials
o Cost
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ONGOING PROJECT SUMMARY

Objective 1 Objective 2 Objective 3 Objective 4
Investigate elements Develop plastic hinge Assess system level Assess system level
under combined loads and rotational capacity performance and losses and life-cycle
functions and integrate develop design COsts
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PRELIMINARY INSIGHTS — AXIAL LOAD EFFECTS

ALR of 25%
ALR of 20%
ALR of 15%
ALR of 10%
ALR of 5%

ALR of 0%
¥ Rebar fracture
® Crushing failure
ALR = Axial Load Ratio

0 2 4 6 8
Drift A/L [%)]

« Axial loading relieves tensile strains in reinforcement
« Axial load can increase deformation capacity
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PRELIMINARY INSIGHTS — ROTATIONAL CAPACITY

Reinforced Concrete Reinforced HPFRCC
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= In reinforced concrete, axial load ratio is assumed to reduce rotational capacity
« In reinforced HPFRCCs, axial load ratio can increase rotational capacity

i) Matslab

ttttttttttttttttttttt
uuuuuuuuuuuuuuuu

Plastic Rotation [rad]



SUMMARY

 UHPC and other HPFRCCs have unique failure modes
necessitating a need for new models in seismic analysis and

design

» There Is significant potential to improve life safety and
reduce damage through these materials when properly
engineered

 New on-going work to understand a broader set of seismic
systems with UHPC and other HPFRCCs
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