Assessment of the Development Length Equation for GFRP Rebars in tension

Research group:

Jesús D. Ortiz, *Ph.D. Student* Zahid Hussain, *Ph.D. Student* Arman Hosseini, *Ph.D. Student* Antonio Nanni, *Ph.D., PE.* Brahim Benmokrane, *Ph.D., PE.*

Fiber-Reinforced Polymer (FRP)

2

Fiber-Reinforced Polymer (FRP)

Non-corrosive (long-term durability).
High longitudinal tensile strength.
Lightweight (1/5 of steel)
Low thermal and electrical conductivity.

No yielding before failure.
Low shear strength and modulus of elasticity.
Cannot be bent in field. Higher initial cost (lower long-term). Longer development length.

In-and-Out Bond Stress

Reinforcement-concrete bond is due to:

- Chemical adhesion.
- **Friction.**

Bearing of reinforcement ribs on the concrete.

Failure Modes

ACI 440.11-22

318-1

CODE-440.11-22

Equation based on the test data conducted **over two decades ago** using FRP bars primarily with **surface deformations** from either a helical lug pattern or a spiral wrap of fibers.

Conservative assumptions were made due to the lack of available data in embedment or splice length, and the effects of some parameters were **disregarded** (i.e., confinement effect).

There have been significant improvements in FRP
material properties and production methods.

\sim	

CONVENTION

Parameter		ACI 440	CSA 806-12	JPCI 2021	In this study
Embedment length	I _d	х	х	Х	X
Concrete strength	f'_c	х	х	X	X
Bar diameter	d_b	Х	Х	Х	X
Spacing or cover dimension	С	х	х	X	X
Top bar factor	α, k ₁	х	Х		
Concrete density factor	λ, k_2		Х		
Area shear reinforcement	A_t			X	X*
Stirrups spacing	S			X	X*
# of bars being developed	n				X*
Mod. of elasticity trans rebar	E_t			X	
Mod. of elasticity long rebar	E_{f}				
Bar size factor	k_3		х		
Fiber factor	k_4		Х		
Surface profile factor	k_5		Х		X**

*implicit in the confinement parameter

** in the next phase with the k_b

Research Objectives

To determine the **development length** of sand-coated GFRP bars in 300 x 450 mm reinforced concrete beams (*classifying their failure mode as Splitting, Pull-out or Tensile Failure*)

To assess the effect of bar diameter, clear cover, confinement and concrete compressive strength on the development length of sand-coated GFRP bars in tension.

To verify the required development length when the stress to be developed is less than the guaranteed tensile strength (compression-controlled sections).

To validate the **current development length equation** in ACI 440 code and propose updates.

To assess the potential influence of different **surface treatments** through experimental results on bond coefficient.

Methodology

9

Graphical Abstract

120 (

CONVENTION

Methodology

Required development length:

 $l_d = 110 d_b \ (1700 \text{ mm})$

 $l_1 = 40 d_b (630 mm)$ $l_2 = 60 d_b (950 mm)$ $l_3 = 80 d_b (1260 mm)$

Instrumentation

Specimen Fabrication

Specimen Fabrication

Loading Protocol

4 Point-Bending Testing

4 Point-Bending Testing

Structural Behavior

What is next?

# SI	SDECIMEN	f'c (MPa)	EXPECTED FORCE	M-S DEFLECTION		ULTIMATE FORCE		EODCE DATE
	SPECIMEN			(mm)	(in.)	(kN)	(kip)	FORCE RATE
P1-01	CC-0.7-(1)	35.5 MPa	168 kN	151 mm	6.0 in.	161 kN	36 kip	95.8%
P1-02	CC-0.7-(2)	35.5 MPa	168 kN	147 mm	5.8 in.	157 kN	35 kip	93.5%
P1-03	CC-1.5-(1)	35.5 MPa	159 kN	147 mm	5.8 in.	160 kN	36 kip	100.8%
P1-04	CC-1.5-(2)	36.0 MPa	159 kN	130 mm	5.1 in.	152 kN	34 kip	95.3%
P1-05	40-0.7(1)	40.0 MPa	168 kN	40 mm	1.6 in.	63 kN	14 kip	37.3%
P1-06	40-0.7(2)							
P1-07	40-1.5(1)							
P1-08	40-1.5(2)							
P1-09	60-0.7(1)							
P1-10	60-0.7(2)							
P1-11	60-1.5(1)							
P1-12	60-1.5(2)							
P1-13	80-0.7(1)							
P1-14	80-0.7(2)							
P1-15	80-1.5(1)							
P1-16	80-1.5(2)							
P1-17	S40-1.5-(1)							
P1-18	S60-1.5-(2)							

Thank

Research group:

Jesús D. Ortiz, *Ph.D. Student* Zahid Hussain, *Ph.D. Student* Arman Hosseini, *Ph.D. Student* Antonio Nanni, *Ph.D., PE.* Brahim Benmokrane, *Ph.D., PE.*

