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Functional Cementitious Composites

Smart Cementitious
Composites
Electromagnetic interference
shielding due to the electrical
conductivity of carbon fibers

Strain sensing due to the volume
electrical resistivity (piezoresisitivity)
and polarization (direct
piezoelectricity)

Strain Hardening

Sensing mechanical (rather than
Damage Sensing thermal) damages according to the
increased electrical resistivity

Acting of carbon fibers as a
thermistor: decrease in their
electrical resistivity by increasing the
temperature

Energy saving in buildings by means

of low electrical resistivity concrete,
Thermal COntroI concrete thermistors, and concrete

with high specific heat

Concrete with high damping capacity —
and high stiffness by means of
steel-reinforcement surface
treatment, or addition of silica fume

Hamidi F, and Aslani F. (2019), Construction and Building Materials, 218(10): 582-609.
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Functional Cementitious Composites for 3DP
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(VCLietal, 2012) Gu et al. Adv, Eng., 2017, 38236
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Functional Cementitious Composites
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Micro-/Nano-Sized Hollow/ Core-Shell Inclusions in Cementitious Matrix

Microstructure of » .
Cement Paste R - C-SH
<1um SO, b CH

Pores

A Single Core-Shell
Particulate (CSP)
Functional Additive

XRM scan of cementitious
composite containing FAC CPS

1—-100um
.
ﬁﬁ ’}’ , - - Cementitious S

Composite Containing
Multiple CSP Inclusions

100um — 1mm

Fine and Coarse
Aggregates
>1mm

Cement Inclusion Phase: Silica Sand
Paste (Grey) (Yellow) + FAC CSP (Blue)
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(ii) Synthetic Foam

Sy > =% FlysAsh
" Cenosphere

Sand Particle
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——ps | °The mechanical properties of

——expancel| ULCC ‘synthetic foam’ depend
ggg highly on the particle size and

—¢—s3sus | shell properties of the inclusion

< %60 phase (micro-fillers).

\ |—o—H50 _
—+—E200/600f * There seems to be an “size

effect”: Smaller particle are likely
4 to yield higher stiffness (Young's
modulus) and strength.

* What exactly is dictating the
material properties?

Compressive Strength (MPa)

o

2000 1800 1600 1400 1200
Density (kg/m°)

Brooks, A.L.*, Zhou, H., and Hanna, D.* (2018), Comparative study of the mechanical and thermal

properties of lightweight cementitious composites. Construction and Building Materials, 159: 316-
328.
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http://www.sciencedirect.com/science/article/pii/S0950061817321566
http://www.sciencedirect.com/science/article/pii/S0950061817321566

Pathways to achieve lightweight/Ultra-lightweight cementitious composite for 3DP
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Large plastic

deformation

under gravity

Chemical induced foaming

I-b ® =
? Foamed (Aerated) Foamed (Aerated) 3D printed ultra-

+ * Concrete — Lightweight Concrete — Ultralightweight  lightweight (foamed)

Good shape
retainage and
buildability but

O :
s . O 30552 difficult to
(ll) l-'Q|'1_twelc,lht_ / O O °OOCEOD extrude at
particulate inclusions ~ Cement paste - & cpo e higher vol%
Synthetic Foam Synthetic Foam Composite
Composite — Lightweight — Ultralightweight LPIs will form a
“skeleton” to
O retain the shape
O S whereas air
O 4+ |3 O OO bubbles aide the|
OOO - extrusion and
& further reduce
1] O . ﬂ
( ) A hybrid approach O O density
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Experimental design

CSA

Foaming

Water

Density
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_ (kg/m3)  (kg/m3) (kg/m®) (kg/m3) (kg/m3) (kg/m3) (kg/m3)  (kg/m?)  (kg/m?)
0811 9.9 9910 0.0 1.7 1.4 0.00 306.4 2200
973.8 16.2 869.9 0.0 0.0 8.5 32.3 304.3 1310
9682 161 8649 0.0 0.0 85 339 306.6 1040
977.4 9.9 493.7 169.5 6.5 1.4 0.0 305.3 1840
FACY5 074.0 0.8 46.0 53.4 0 i 0.0 304 580
10144 16.9 229.0 235.9 10.1 0.9 12.7 304.3 1160
980.6 16.3 221.3 228.0 4.9 4.1 294 306.5 840
950.2 15.8 0.0 2938 0.0 8.3 36.4 313.9 470
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Printability Extrudability

Flowability
Mixture Avg Std Avg Std
18
o = g(r]e;?n (cm) (cm) (cm) (cm)
14 Ref E E 1.60 0.10 1.23 0.18
12 E E 1.62 0.03 1.49 0.04
104 OE OE 1.81 0.16 1.71 0.13

E NE 1.19 0.08 NE* NE
E NE 1.05 0.00 NE NE
OE E 1.70 0.08 1.41 0.05
OE E 1.76 0.15 1.61 0.16

A2 W2 ?g'fb 5o
& P S FAC100-FA36 E E 1.53 0.04 1.41 0.05

Flowability (cm)
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Printability

Buildability
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Microstructure
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Mechanical Properties
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Compressive
strength
(y-axis)
(MPa)
66.40 £ 0.91
23.50+ 1.46
NP*
59.75 £ 2.47
43.69 + 2.08
12.11 £ 0.53
8.30+0.44

2.79+0.14

Compressive
strength
(z-axis)
(MPa)
61.60 + 1.55
12.54 £ 0.17
NP*
53.46 £ 0.21
36.57 + 1.87
8.19+0.18
7.23+£0.36

1.76 £ 0.15

Direct shear
strength

(MPa)
20.79 £ 0.51
6.01+0.14
NP
15.49+0.41
8.75+0.68
3.14+0.17
1.74 £ 0.09

0.79+0.02
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Thermal Properties
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Microstructure-Guided Modeling
Micro-/Nano-Sized Hollow/ Core-Shell Inclusions in Cementitious Matrix

Equivalent Solid
Particle

Shell X,

Particle Size Distribution

\
A N\

Frequency
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00 e} | Matrix Matrix
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‘ ' | @ | Hollow/ Core-Shell Inclusion Equivalent
10 F’ze(ljrt?gle 5s(i)ze (1L?r(r)1) - ' ) with Functionally Graded Particle with
? % fa Interface Perfect Interface
g @ /@ Stage 1: Particle Equivalence (Single
| lo @ Inclusion)
|
|

Finite Element
Method

Homogehi

Cementitious Composite
Mori-Tanaka RVE ( 7
Method

|
a5
| o OOO: with Polydispersed CSP
. S
O. Q :
Stage 2: Numerical and Analytical Homogenization

Shen, Z., and Zhou, H.* (2020), Cement and Concrete Composites. 105, 103439. (\
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Microstructure-Guided Modeling

Microstructure-guided FEA (Numerical)

Microstructur

; FE Meshing
e Generation
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Mori-Tanaka Method (Analytical)
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Remarks & Outlook

« Three different strategies to achieve LCC and ULCC are investigated.

» The printability, mechanical properties, and thermal properties were studied.
With only chemical foaming — the buildability of the mixture loses quickly as
density reduces.

» The synergistic effect of chemical foaming and ‘synthetic foam’, the density of
the mixture can be significantly reduced without compromising (too much) on the
buildability and other printability parameters.

« Unprecedented low density (400kg/m3) was achieved with the hybrid foaming
strategy proposed.

« Studies are on-going in many other application involving micro-sized functional
additives in 3D printable concrete.
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