# Ultra-Lightweight 3D Printable Cementitious Composites



Peyman Zandifaez, PhD Student; Reese Sorgenfrei, PhD Student Hongyu 'Nick' Zhou, Ph.D., Associate Professor

Department of Civil and Environmental Engineering

University of Tennessee, Knoxville

ACI Spring Convention, San Francisco

April, 2023







# **Functional Cementitious Composites**



Hamidi F, and Aslani F. (2019), Construction and Building Materials, 218(10): 582-609.



# **Functional Cementitious Composites for 3DP**



Ultra-lightweight Cementitious Composite (ULCC)



**Thermal Energy Storage** 



# **Functional Cementitious Composites**





## Micro-/Nano-Sized Hollow/ Core-Shell Inclusions in Cementitious Matrix



# (ii) Synthetic Foam





• The mechanical properties of ULCC 'synthetic foam' depend highly on the particle size and shell properties of the inclusion phase (micro-fillers).

• There seems to be an "size effect": Smaller particle are likely to yield higher stiffness (Young's modulus) and strength.

• What exactly is dictating the material properties?

ac

VEN

Brooks, A.L.\*, **Zhou, H.**, and Hanna, D.\* (2018), Comparative study of the mechanical and thermal properties of lightweight cementitious composites. <u>*Construction and Building Materials*, 159: 316-328</u>.

# Pathways to achieve lightweight/Ultra-lightweight cementitious composite for 3DP



#### THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

CONCRETE CONVENTION

# **Experimental design**

|  | Mix ID      | OPC                  | CSA                  | Sand                 | FAC     | SP      | CE                   | Foaming<br>Agent     | Water                | Density |  |
|--|-------------|----------------------|----------------------|----------------------|---------|---------|----------------------|----------------------|----------------------|---------|--|
|  |             | (kg/m <sup>3</sup> ) | (kg/m <sup>3</sup> ) | (kg/m <sup>3</sup> ) | (kg/m³) | (kg/m³) | (kg/m <sup>3</sup> ) | (kg/m <sup>3</sup> ) | (kg/m <sup>3</sup> ) | (kg/m³) |  |
|  | Ref         | 981.1                | 9.9                  | 991.0                | 0.0     | 1.7     | 1.4                  | 0.00                 | 306.4                | 2200    |  |
|  | FA32        | 973.8                | 16.2                 | 869.9                | 0.0     | 0.0     | 8.5                  | 32.3                 | 304.3                | 1310    |  |
|  | FA34        | 968.2                | 16.1                 | 864.9                | 0.0     | 0.0     | 8.5                  | 33.9                 | 306.6                | 1040    |  |
|  | FAC50       | 977.4                | 9.9                  | 493.7                | 169.5   | 6.5     | 1.4                  | 0.0                  | 305.3                | 1840    |  |
|  | FAC75       | 974.0                | 9.8                  | 246.0                | 253.4   | 11.0    | 1.4                  | 0.0                  | 304.2                | 1680    |  |
|  | FAC75-FA13  | 1014.4               | 16.9                 | 229.0                | 235.9   | 10.1    | 0.9                  | 12.7                 | 304.3                | 1160    |  |
|  | FAC75-FA29  | 980.6                | 16.3                 | 221.3                | 228.0   | 4.9     | 4.1                  | 29.4                 | 306.5                | 840     |  |
|  | FAC100-FA36 | 950.2                | 15.8                 | 0.0                  | 293.8   | 0.0     | 8.3                  | 36.4                 | 313.9                | 470     |  |

CONVENTION

## **Printability**

Flowability



#### Extrudability

|             |       | 30 min | Fre  | esh  | 30 min          |      |  |
|-------------|-------|--------|------|------|-----------------|------|--|
| Mixture     | Fresh |        | Avg  | Std  | Avg             | Std  |  |
|             |       |        | (cm) | (cm) | (cm)            | (cm) |  |
| Ref         | Е     | E      | 1.60 | 0.10 | 1.23            | 0.18 |  |
| FA32        | E     | E      | 1.62 | 0.03 | 1.49            | 0.04 |  |
| FA34        | OE    | OE     | 1.81 | 0.16 | 1.71            | 0.13 |  |
| FAC50       | Е     | NE     | 1.19 | 0.08 | NE <sup>*</sup> | NE   |  |
| FAC75       | E     | NE     | 1.05 | 0.00 | NE              | NE   |  |
| FAC75-FA13  | OE    | Е      | 1.70 | 0.08 | 1.41            | 0.05 |  |
| FAC75-FA29  | OE    | Е      | 1.76 | 0.15 | 1.61            | 0.16 |  |
| FAC100-FA36 | E     | E      | 1.53 | 0.04 | 1.41            | 0.05 |  |





## **Printability**

Buildability



## Microstructure



(a)

## **Mechanical Properties**









## **Thermal Properties**







# **Microstructure-Guided Modeling**

Micro-/Nano-Sized Hollow/ Core-Shell Inclusions in Cementitious Matrix



CONVENTIO

# **Microstructure-Guided Modeling**



#### Microstructure-guided FEA (Numerical)

### Mori-Tanaka Method (Analytical)





- -

#### THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

Density (kg/m<sup>3</sup>)

# **Remarks & Outlook**

- Three different strategies to achieve LCC and ULCC are investigated.
- The printability, mechanical properties, and thermal properties were studied. With only chemical foaming – the buildability of the mixture loses quickly as density reduces.
- The synergistic effect of chemical foaming and 'synthetic foam', the density of the mixture can be significantly reduced without compromising (too much) on the buildability and other printability parameters.
- Unprecedented low density (400kg/m<sup>3</sup>) was achieved with the hybrid foaming strategy proposed.
- Studies are on-going in many other application involving micro-sized functional additives in 3D printable concrete.



# References

- 1. AL Brooks, Y He, N Farzadnia, S Seyfimakrani, and H Zhou (2022). Incorporating PCM-enabled thermal energy storage into 3D printable cementitious composites. **Cement and Concrete Composites** (129), 104492
- 2. Z Shen, AL Brooks, Y He, J Wang, and <u>H Zhou</u>\* (2021). Physics-guided multi-objective mixture optimization for functional cementitious composites containing microencapsulated phase changing materials. **Materials & Design** (207), 109842.
- 3. A Brooks, Y Fang, Z Shen, J Wang, and <u>H Zhou</u>\* (2021). Enabling high-strength cement-based materials for thermal energy storage via fly-ash cenosphere encapsulated phase change materials, **Cement and Concrete Composite** (120), 104033.
- 4. Shen, Z., and <u>Zhou, H</u>.\* (2020). Predicting effective thermal and elastic properties of cementitious composites containing polydispersed hollow and core-shell micro-particles. **Cement and Concrete Composites**, 105:103439.
- <u>Zhou H</u>.\* and Brooks A.L. (2019), Mechanical and thermal properties of lightweight concrete and cementitious composites containing lightweight aggregates and fly-ash cenospheres.
  **Construction and Building Materials**, 198: 512-526.
- 6. Brooks A.L., <u>Zhou H</u>.\*, and Hanna D. (2018), Comparative study of the mechanical and thermal properties of lightweight cementitious composites, **Construction and Building Materials**, 159: 316-328.



# Acknowledgement

This work is partially sponsored by the U.S. Department of Energy (DOE) Building Technology Office (BTO) through award DE-EE0008677 and U.S. National Science Foundation (NSF) through grant CMMI-1954517

### The authors would also like to acknowledge:

Mike Fiske, NASA MSFC/ Jacobs, Jennifer Edmunson, NASA Adam Brooks, Oak Ridge National Laboratory Prof. Jialai Wang, University of Alabama

MaterBuilder Solutions (Jaclyn Streeler) and 3M Advanced Materials (Kevin Rink, Rob Hunter).

