Performance of Structural Concrete Using Waste-to-Energy (WTE) Combined Ash

Yixi Tian, Postdoc Research Scientist

Supervisors: Prof. A.C. (Thanos) Bourtsalas, Prof. Shiho Kawashima, Prof. Nickolas J. Themelis, Earth and Environmental Engineering Department Civil Engineering and Engineering Mechanics Department Columbia University

Bottom Ash as a Concrete SCM, Part 2 of 2, ACI Spring 2022 Convention, Orlando, FL, Mar 27, 2022

COLUMBIA | ENGINEERING The Fu Foundation School of Engineering and Applied Science

Waste-to-Energy (WTE) Residues Generation

2 | Performance of Structural Concrete Using Waste-to-Energy (WTE) Combined Ash

COLUMBIA | ENGINEERING

Benefits and Challenges: Use of WTE Combined Ash in Concrete

Benefits

- <u>Circular economy</u>: Transforming the waste residues to secondary construction materials with effective cement stabilization/solidification.
- <u>To WTE plants</u>: Reducing the cost of landfills (MSW: \$54/ton; hazardous: \$130/ton).
- <u>To construction</u>: Reducing the cost of materials and the high environmental impact of natural resource extraction.

Challenges

- <u>Heterogenous materials</u>: 50-70% mineral fractions, 15-30% glass and ceramics, 5-13% ferrous metals, 2-5% non-ferrous metals, 1-5% unburned organics
- Low reactivity: Size separation & selection
 → for better applications design
- Leaching: Examining the leachability of heavy metals in concrete products

Particle Size Distribution of WTE Combined Ash and Ash Fractions

Combined ash (CA) undergoes water washing, crushing, and screening to yield three ash fractions: 27% coarse combined ash (CCA, 9.5-25 mm), 37% medium (MCA, 2-9.5 mm), and 25% fine (FCA, < 2 mm) according to ASTM C136 and ASTM C33 for civil engineering applications.

Mix Design of Concrete and Cement Mortar for Three Ash Fractions

Structural concrete

9.5-25 mm2-9.5 mmCoarse (CCA)Medium (MCA)

Cement mortar

The ratio of fine aggregate to cement was fixed at 3:2.

1. Directly using FCA as sand substitute

w/c = 0.4, 0.5 0, 10, 25, 50, 75, 100 vol.%

2. Milling the FCA to powder (MFCA) and using it as cement substitute

w/c = 0.4 0, 10, 25, 50 vol.%

CCA and MCA substitute stone aggregate (crushed gravel)

Sand : total aggregate : cement = 1.67 : 2.31 : 1.

CCA or MCA to gravel replacements: 0, 10, 30, 100 wt.%

< 2 mm Fine (FCA)

Research Outline: Use of WTE Combined Ash in Concrete

- Methods
 - Concretes (CCA, MCA):
 - Compressive strength gain, elastic modulus, density, void content
 - Mortars (FCA, MFCA):
 - Compressive strength gain, flow table, XRD, SEM
 - Leachability
- Conclusions and future work

Coarse and Medium Ash as Stone Aggregate Substitutes in Concrete

- Up to 100 wt.% of stone aggregate in concrete can be substituted by MCA and CCA.
- The 28-day compressive strength exceeds 28 MPa, which is comparable to commercial concrete.

Fractured surface of CCA 100% concrete

Characterization of Fine Combined Ash for Applications Design

- When FCA is utilized as a sand substitute, it was considered to have no additional cementitious or pozzolanic reactivity.
- Utilizing MFCA as cement substitute, the particle size was reduced increasing the relative surface area, resulting in an influence on cement hydration reaction.

Fine Ash as Sand Substitute or Cement Substitute in Cement Mortar

Compensating for high water absorption of FCA (12.80%) to improve workability when utilizing it as aggregate replacement

- When utilizing FCA as a sand substitute, additional water is critical for maintaining proper consistency and workability.
- To achieve a 28d compressive strength of > 28 MPa, sand replacement with FCA must be limited to 50 vol.% and OPC replacement with MFCA must be limited to 25 vol.%.

Mineral Transformation of the Milled Fine Ash in Cement Paste

SEM of Derived Products

Fracture surface of 28d 100 vol.% FCA cement mortar

Metallic aluminum (AI) in FCA/MFCA reacted with Ca(OH)₂, generating hydrogen gas bubbles and cracks.

MFCA particles

MFCA paste

28d 50 vol.% MFCA cement paste

Effective Cement Stabilization/Solidification of Three Ash Fractions

Introducing CCA or MCA to concrete and FCA to cement mortars can effectively stabilize/solidify the heavy metals and transform the three ash fractions to non-hazardous or inert material that can be used in construction.

Summary of Conclusions and Future Works

Summary of Conclusions:

- Up to 100% normal aggregate can be substituted with 2-25 mm WTE combined ash (MCA, CCA) and still exhibit 28-day compressive strengths > 28MPa.
- To achieve a 28-day compressive strength of > 28 MPa, sand replacement with FCA must be limited to 50 vol.% and OPC replacement with MFCA must be limited to 25 vol.%.
- The MFCA contributed to the presence of more amorphous phases through pozzolanic reaction.
- Utilizing WTE combined ash in concrete can effectively stabilize/solidify the leachability of heavy metals.

Future work:

 Comparison of WTE fly ash/bottom ash (different sizes) and coal fly ash/bottom ash (different sizes) in mineral transformation and cementitious reactivity.

Acknowledgements

Columbia University in the City of New York

Columbia | Engineering

Robert A. W. Carleton Strength of Materials Laboratory

PhD students:

- Diandian Zhao
- AlaEddin Douba
- Palash Badjatya

Earth Engineering Center (EEC)

Yixi Tian <yt2532@columbia.edu>

15 | *Performance of Structural Concrete Using Waste-to-Energy (WTE) Combined Ash*

