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Research Questions



Key questions addressed in this research

1. Can we accurately estimate the relationship between compressive strength

and mix proportions of UHPC with a few experimental runs & ML models?

2. Can we evaluate the effect of changes in mix proportioning on mechanical 

performance in an easy and intuitive way?

3. Can we evaluate the effect of mix proportioning & mechanical performance on 

cost and eco-efficiency concurrently?

4. Are high paste content, high strength (and ultra-high strength) concrete 

technologies detrimental to cost and/or eco efficiencies?
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Reduced experimental runs
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Phase A(I)

Levels 1 2 3 4 5

Features

Slag 0 15 30 45 60

Microsilica 0 5 10 15 20

Fly Ash 0 3.75 7.5 11.25 15
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Phase A Phase B

Binder 
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Mortar 
scale



Design strategy
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Phase A Phase B

Binder 
scale

Mortar 
scale

Variables:
• Slag
• Microsilica
• Fly ash
• w/cm
• HRWR/cm

Variables:
• Concrete sand
• Crushed sand
• Ground Quartz
• w/cm
• HRWR/cm

Orthogonal array variables
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Modeling
Methods/algorithms:

• kNN

• Random Forest

• Linear regression (polynomial models)
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Key questions addressed in this research
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1. Can we accurately estimate the relationship between compressive strength and 

mix proportions of UHPC with a few experimental runs & ML models? -> YES

2. Can we evaluate the effect of changes in mix proportioning on mechanical 

performance in an easy and intuitive way?

3. Can we evaluate the effect of mix proportioning & mechanical performance on 

cost and eco-efficiency concurrently?

4. Are high paste content, high strength (and ultra-high strength) concrete 

technologies detrimental to cost and/or eco efficiencies?
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PDD
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PDD
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1. Use to optimize a certain material property (e.g., fc = 130 MPa)



PDD

27

1. Use to optimize a certain material property (e.g., fc = 130 MPa)

2.5% microsilica

45% slag



PDD
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2. Impose design limits and evaluate alternative mixtures (e.g., fc > 120 MPa)



PDD
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3. Use to evaluate predictive structure of models -> detect errors



PDD
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4. Make categorical predictions -> e.g., failure models



PDD
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5. Evaluate probability of failure occurrences with Categorical PDDs



Results



PDD Phase A
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PDD
Phase B
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PDD
Phase B
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C3
fc = 155 MPa
Fa/cm > 1



Key questions addressed in this research
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1. Can we accurately estimate the compressive strength of UHPC with reduced 

experimental runs & ML models? -> YES

2. Can we evaluate the effect of changes in mix proportioning on mechanical 

performance in an easy and intuitive way? -> YES

3. Can we evaluate the effect of mix proportioning & mechanical performance on 

cost and eco-efficiency concurrently?

4. Are high paste content, high strength (and ultra-high strength) concrete 

technologies detrimental to cost and/or eco efficiencies?



Cost and Environmental 
Impact



Eco-efficiency Indices
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Cost-efficiency Indices
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Volumetric environmental impact vs 
Eco-Efficiency Density Diagrams
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c c

TotalGWP i ingredientA i ingredientB= + +
(kg CO2-eq/m3)



Volumetric Unit Cost vs Cost-Efficiency 
Density Diagrams
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Volumetric Indicators vs Efficiency Indicators
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Filtered Eco-Efficiency Density Diagrams
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Key questions addressed in this research
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1. Can we accurately estimate the compressive strength of UHPC with reduced 

experimental runs & ML models? -> YES

2. Can we evaluate the effect of changes in mix proportioning on mechanical 

performance in an easy and intuitive way? -> YES

3. Can we evaluate the effect of mix proportioning & mechanical performance on 

cost and eco-efficiency concurrently? -> YES

4. Are high paste content, high strength (and ultra-high strength) concrete 

technologies detrimental to cost and/or eco efficiencies?



COMPARISON BETWEEN DIFFERENT 
CONCRETE TECHNOLOGIES



46



47



Key questions addressed in this research
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1. Can we accurately estimate the compressive strength of UHPC with reduced 

experimental runs & ML models? -> YES

2. Can we evaluate the effect of changes in mix proportioning on mechanical 

performance in an easy and intuitive way? -> YES

3. Can we evaluate the effect of mix proportioning & mechanical performance on 

cost and eco-efficiency concurrently? -> YES

4. Are high paste content, high strength (and ultra-high strength) concrete 

technologies detrimental to cost and/or eco efficiencies? -> NO



CONCLUSIONS
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1. Can we accurately estimate the compressive strength of UHPC with reduced 

experimental runs & ML models? -> YES (OA+ML)

2. Can we evaluate the effect of changes in mix proportioning on mechanical 

performance in an easy and intuitive way? -> YES (PDD)

3. Can we evaluate the effect of mix proportioning & mechanical performance on 

cost and eco-efficiency concurrently? -> YES (CEDD & EEDD)

4. Are high paste content, high strength (and ultra-high strength) concrete 

technologies detrimental to cost and/or eco efficiencies? -> NO
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Implications
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• This study provides guidance -> develop EEDDs -> proof of optimization -> EPDs

• Facilitate decision making (material availability, cost, accessibility, embodied CO2)

• Facilitate communication between non-expert personnel (in AI and materials)

involved in projects (owners, policy makers, designers, architects and producers)

• Lift mis-conceptional barriers on UHPC -> promote application where suitable

• Encourage innovative mix designs with new materials (e.g., nanomaterials)



Implications

52

• This study provides guidance -> develop EEDDs -> proof of optimization -> EPDs

• Facilitate decision making (material availability, cost, accessibility, embodied CO2)

• Facilitate communication between non-expert personnel (in AI and materials)

involved in projects (owners, policy makers, designers, architects and producers)

• Lift mis-conceptional barriers on UHPC -> promote application where suitable

• Encourage innovative mix designs with new materials (e.g., nanomaterials)



Implications

53

• This study provides guidance -> develop EEDDs -> proof of optimization -> EPDs

• Facilitate decision making (material availability, cost, accessibility, embodied CO2)

• Facilitate communication between non-expert personnel (in AI and materials)

involved in projects (owners, policy makers, designers, architects and producers)

• Lift mis-conceptional barriers on UHPC -> promote application where suitable

• Encourage innovative mix designs with new materials (e.g., nanomaterials)



Implications

54

• This study provides guidance -> develop EEDDs -> proof of optimization -> EPDs

• Facilitate decision making (material availability, cost, accessibility, embodied CO2)

• Facilitate communication between non-expert personnel (in AI and materials)

involved in projects (owners, policy makers, designers, architects and producers)

• Lift mis-conceptional barriers on UHPC -> promote application where suitable

• Encourage innovative mix designs with new materials (e.g., nanomaterials)



Implications

55

• This study provides guidance -> develop EEDDs -> proof of optimization -> EPDs

• Facilitate decision making (material availability, cost, accessibility, embodied CO2)

• Facilitate communication between non-expert personnel (in AI and materials)

involved in projects (owners, policy makers, designers, architects and producers)

• Lift mis-conceptional barriers on UHPC -> promote application where suitable

• Encourage innovative mix designs with new materials (e.g., nanomaterials)



FUTURE WORK



Future Work
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• New indices -> CO2 of reinforcing steel on eco-efficiency

• New indices -> difference in span achieved in bridge elements (beams, girders) for

different concretes -> weight of the superstructure -> number and volume of

supporting substructural elements (columns, footing and piles)

• PDDs to optimize material properties other than compressive strength should be

explored (e.g., fiber reinforced concretes)
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Future Work
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• Further improvement of the end-specimen conditions -> strengths over 125 MPa

• New indices -> CO2 of reinforcing steel on eco-efficiency

• New indices -> difference in span achieved in bridge elements (beams, girders) for

different concretes -> weight of the superstructure -> number and volume of

supporting substructural elements (columns, footing and piles)

• PDDs to optimize material properties other than compressive strength should be

explored (e.g., fiber reinforced concretes)



Future Work
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• New models -> inputs related to individual particle make-up (fineness,

characteristic particle size and compound composition of the raw ingredients) ->

potential to overcome the multi-source variability issue

• Inclusion of nanomaterials & fibers should be evaluated through standard test

protocols -> compare UHPCs w/ much higher strengths vs other concretes



Future Work

63

• New models -> inputs related to individual particle make-up (fineness,

characteristic particle size and compound composition of the raw ingredients) ->

potential to overcome the multi-source variability issue

• Inclusion of nanomaterials & fibers should be evaluated through standard test

protocols -> compare UHPCs w/ much higher strengths vs other concretes



Upcoming Publications

64

C. Tavares, Multi-Objective Density Diagrams Developed with Machine Learning
Models to Optimize Sustainability and Cost-Efficiency of UHPC Mix Design,
Ph.D. dissertation, Texas A&M University (May 2022)

C. Tavares, X. Wang, S. Saha, Z. Grasley,Machine Learning-Based Mix Design Tools to
Minimize Carbon Footprint and Cost of UHPC. Part 1: Efficient Data Collection
and Modeling (under review 2022)

C. Tavares and Z. Grasley, Machine Learning-Based Mix Design Tools to Minimize
Carbon Footprint and Cost of UHPC. Part 2: Cost- and Eco-Efficiency Density
Diagrams (under review 2022)



References

65

Kourehpaz, Pouria, and Sabbie A. Miller. 2019. 'Eco-efficient design indices for 
reinforced concrete members', Materials and Structures, 52: 96.



THANK YOU!

66

Cesario Tavares, PhD

Postdoctoral Researcher

Zachry Department of Civil & Environmental 

Engineering | Texas A&M University

email: cesariotavares@tamu.edu

phone: (832)819-9856

web: https://www.linkedin.com/in/cesariotavares/

mailto:cesariotavares@tamu.edu
https://nam04.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.linkedin.com%2Fin%2Fcesariotavares%2F&data=02%7C01%7C%7Cc703ef2c0e9246616f1508d7581cb772%7C84df9e7fe9f640afb435aaaaaaaaaaaa%7C1%7C0%7C637074752666360411&sdata=U6BSXHJrMGZhK0HjCN%2FHggz%2FbLDGIhsGnbxLb4KaDrc%3D&reserved=0


APPENDIX



68

 0.62 ( )r cf f MPa=

 0.94 ( )r cf f MPa=

2.55 ( )r cf f MPa=



3D density plots -> predictive structure 
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Modeling
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Modeling
Evaluating predictive performance of models:

• 3D density plots

• RMSE

• Correlation plots (predictions vs actual outcomes)

R2 is only applicable to evaluate linear regression*

*Spiess and Neumeyer, An evaluation of R2 as an inadequate measure for nonlinear
models in pharmacological and biochemical research: a Monte Carlo approach
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