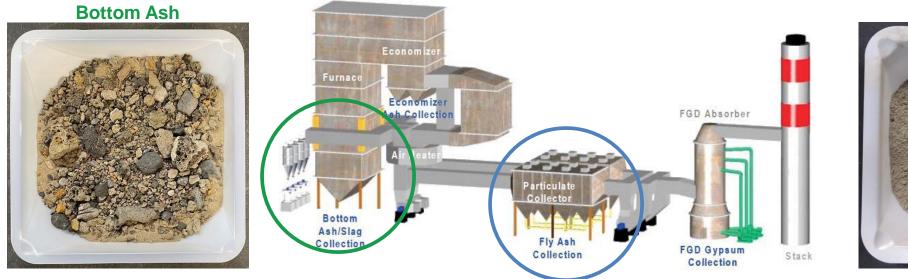


Characterization, Reactivity, and Performance of Ground Bottom Ash and Fly Ash from the Same Sources in Cementitious Systems

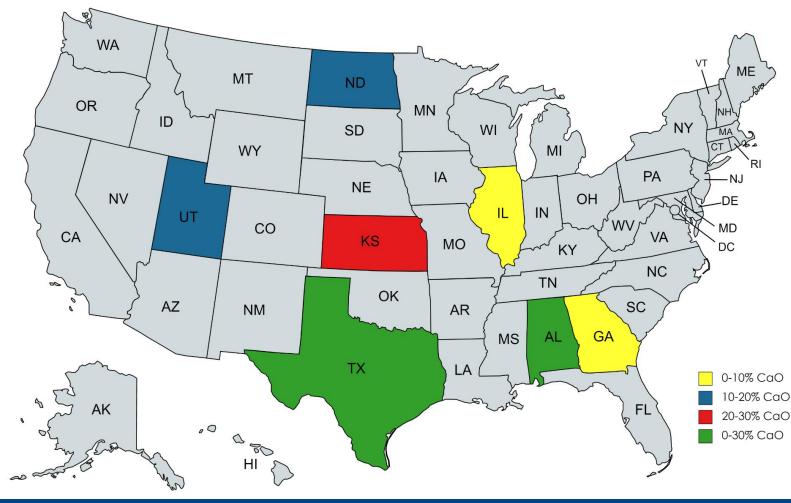
Cole Spencer cole.spencer@ecomaterial.com


Material Information

- Bottom Ash and Fly Ash
- Ash Sample Selection and Collection

Bottom Ash and Fly Ash

Fly Ash


Challenges and Questions

- 1. How can bottom ash be made into a useable SCM?
- 2. Is bottom ash a reactive material in cementitious systems?
- 3. Does bottom ash behave and react in the same way as fly ash?

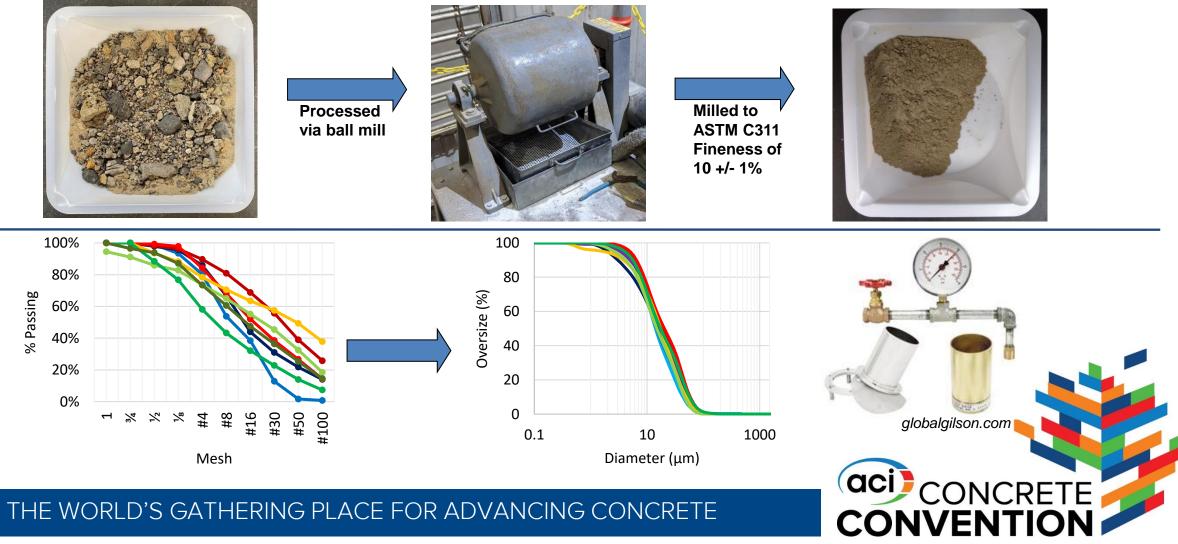
Ash Sample and Collection

- Bottom Ash and Fly Ash were sourced from 9 different power generating facilities
- Sources were selected to ensure a wide range of calcium content was represented

CONCRETE

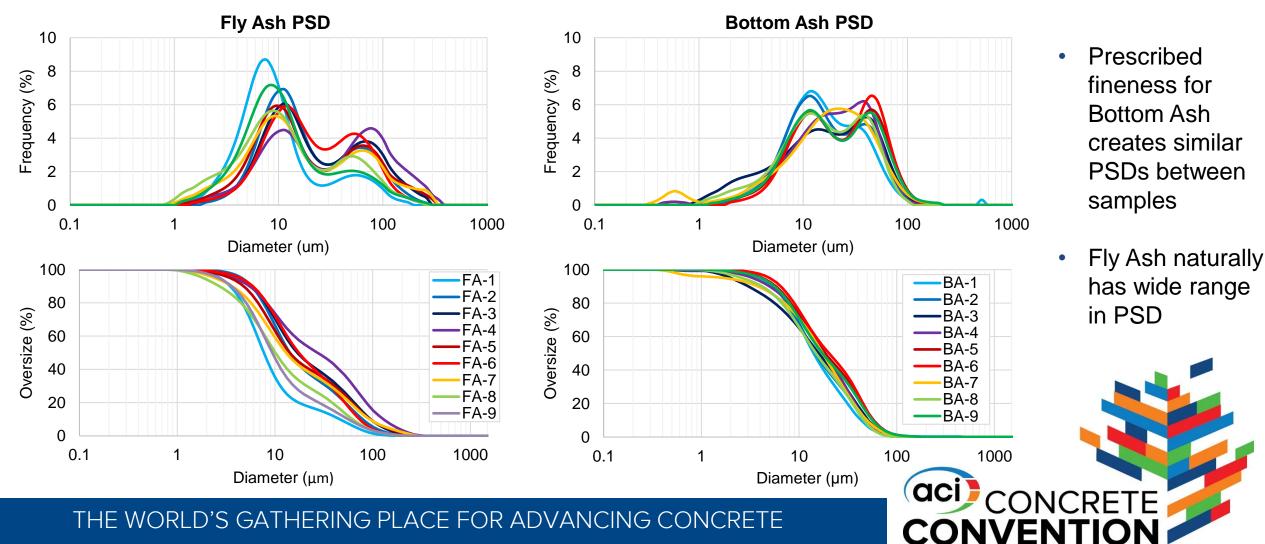
CONVENTI

acı



Material Characterization

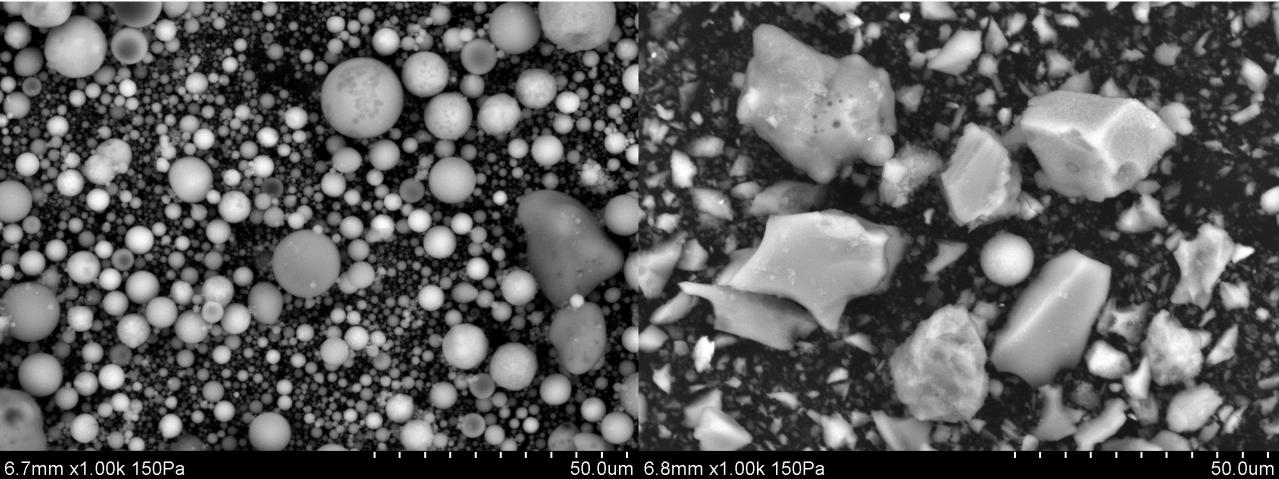
- Physical Characterization
- Chemical Characterization
- ASTM C618 Characterization



THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

GIES

Physical Characterization – Particle Size Distribution

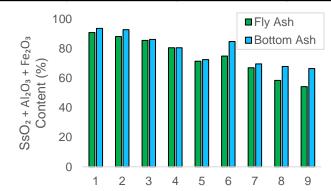


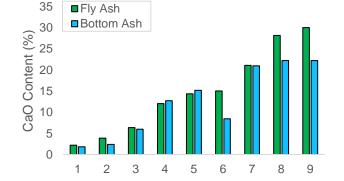
Physical Characterization – Morphology

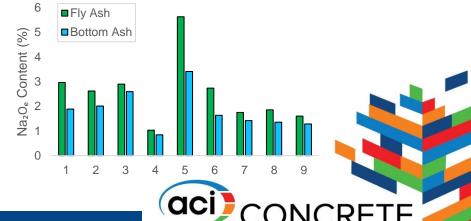
Fly Ash from Source 3

Pulverized Bottom Ash from Source 3

Source 3 Bottom Ash Passing #100 Mesh


7.9mm x110 150Pa


500um



Chemical Characterization – Bulk Oxide Composition (XRF)

	FA-1	BA-1	FA-2	BA-2	FA-3	BA-3	FA-4	BA-4	FA-5	BA-5	FA-6	BA-6	FA-7	BA-7	FA-8	BA-8	FA-9	BA-9	BA Generally Higher or Lower?
SiO ₂	63.2	69.8	49.5	47.4	55.5	53.1	56.0	57.4	50.2	51.5	57.2	67.1	39.8	44.6	34.9	44.1	31.8	40.5	Higher
Al ₂ O ₃	21.6	16.6	21.6	20.3	18.6	17.5	20.0	17.2	15.3	14.4	13.2	13.9	20.9	18.4	17.6	16.7	17.6	15.9	Lower
Fe ₂ O ₃	6.0	7.2	16.9	25.0	11.3	15.4	4.4	5.8	6.0	6.6	4.5	3.7	6.2	6.6	5.9	7.0	4.8	10.0	Higher
Sum	90.7	93.5	88.0	92.7	85.4	86.1	80.5	80.4	71.4	72.5	74.9	84.6	66.9	69.5	58.4	67.8	54.2	66.4	Higher
SO ₃	0.3	0.1	1.5	0.1	1.0	1.0	0.6	1.5	0.8	1.3	1.5	0.7	1.5	0.4	2.0	0.6	2.4	0.7	Inconclusive
CaO	2.2	1.8	3.9	2.4	6.4	6.0	12.0	12.7	14.4	15.2	15.0	8.5	21.1	21.0	28.1	22.2	30.0	22.2	Lower
Na ₂ O	1.5	0.9	1.0	0.7	1.2	1.0	0.4	0.3	4.2	2.2	2.1	1.0	1.3	1.1	1.6	1.1	1.4	1.1	Lower
MgO	1.4	1.0	1.2	0.9	1.4	1.4	2.5	2.4	4.5	4.9	3.7	2.7	4.5	4.1	6.0	4.5	7.6	6.1	Lower
K ₂ O	2.2	1.5	2.5	2.0	2.6	2.4	1.0	0.9	2.2	1.8	0.9	1.0	0.6	0.5	0.5	0.4	0.3	0.3	Lower
P_2O_5	0.1	0.1	0.2	0.1	0.5	0.6	0.1	0.1	0.1	0.2	0.2	0.2	1.1	0.8	0.9	0.7	0.9	0.5	Inconclusive
TiO ₂	1.0	0.8	1.1	1.0	0.9	0.9	1.3	1.3	0.7	0.7	0.9	0.7	1.5	1.4	1.3	1.4	1.3	1.3	Inconclusive
SrO	0.1	0.1	0.1	0.1	0.1	0.1	0.3	0.3	0.3	0.3	0.1	0.1	0.3	0.3	0.4	0.4	0.5	0.4	Inconclusive
BaO	0.3	0.2	0.1	0.1	0.1	0.1	0.1	0.2	0.6	0.4	0.1	0.1	0.6	0.5	0.6	0.5	0.7	0.5	Inconclusive
Na ₂ O _e	3.0	1.9	2.6	2.0	2.9	2.6	1.0	0.8	5.6	3.4	2.7	1.6	1.7	1.4	1.9	1.4	1.6	1.3	Lower

CONVEN

Material Characterization – Fly Ash

ASTM C618 – Requirements for Coal Fly Ash

		ASTM C61	8 Chemical Re	quirements		ASTM C618 Physical Requirements						
Measurement	$SiO_2 + Al_2O_3 + Fe_2O_3$ (%)	CaO (%)	SO ₃ (%)	Moisture (%)	LOI (%)	Fineness (% ret. #325)	7 Day SAI (% of Control)	28 Day SAI (% of Control)	Water Reqt. (% of Control)	Specific Gravity		
Class F Ash ASTM Limit	50.0	18.0	5.0	3.0	6.0	34	75	75	105	-		
FA-1	90.7	2.2	0.3	0.1	0.4	14	103	104	95	2.37		
FA-2	88.0	3.9	1.5	3.0	3.1	29	87	81	100	2.41		
FA-3	85.4	6.4	1.0	0.0	0.5	26	88	78	95	2.40		
FA-4	80.5	12.0	0.6	0.0	0.0	26	86	84	96	2.56		
FA-5	71.4	14.4	0.8	0.0	0.0	26	85	87	94	2.56		
FA-6	74.9	15.0	1.5	0.0	0.4	17	88	84	95	2.53		
FA-7	66.9	21.1	1.5	0.1	0.5	22	106	114	96	2.61		
FA-8	58.4	28.1	2.0	0.0	0.1	11	113	108	94	2.79		
F A-9	54.2	30.0	2.4	0.0	0.6	10	122	113	97	2.82		

All samples acquired for testing pass ASTM C618, and are representative of ashes currently sold in the market

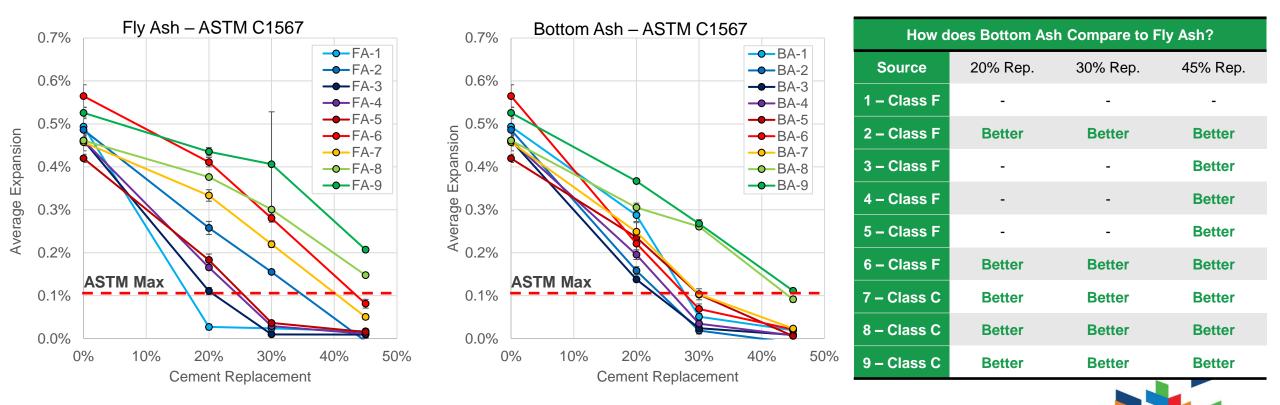
Material Characterization – Bottom Ash

ASTM C618 – Requirements for Coal Fly Ash

		ASTM C61	8 Chemical Re	quirements		ASTM C618 Physical Requirements						
Measurement	$\frac{\text{SiO}_2 + \text{Al}_2\text{O}_3 +}{\text{Fe}_2\text{O}_3(\%)}$	CaO (%)	SO ₃ (%)	Moisture (%)	LOI (%)	Fineness (% ret. #325)	7 Day SAI (% of Control)	28 Day SAI (% of Control)	Water Reqt. (% of Control)	Specific Gravity		
Class F Ash ASTM Limit	50.0	18.0	5.0	3.0	6.0	34	75	75	105	-		
BA-1	93.5	1.8	0.1	0.1	0.2	11	81	74	101	2.67		
BA-2	92.7	2.4	0.1	0.1	0.4	9	78	76	100	2.94		
BA-3	86.1	6.0	1.0	0.4	0.2	9	77	82	99	2.80		
BA-4	80.4	12.7	1.5	0.5	0.8	11	76	81	99	2.75		
BA-5	72.5	15.2	1.3	1.2	13.6	10	84	89	98	2.50		
BA-6	84.6	8.5	0.7	0.3	10.5	10	87	82	100	2.49		
BA-7	69.5	21.0	0.4	0.0	0.1	10	90	84	98	2.94		
BA-8	67.8	22.2	0.6	0.4	1.8	11	81	78	100	2.88		
BA-9	66.4	22.2	0.7	0.0	3.5	11	88	87	100	-		

• Materials tested do not all cleanly pass ASTM C618

• SAI results of bottom ashes are less obviously influenced by parameters measured by ASTM C618



Material Performance

- Alkali-Silica Reaction Mitigation via ASTM C1567
- Concrete Compressive Strength and Resistivity

ac

CONCRETE

CONVENTIO

- 1. Bottom ash, when properly processed, can mitigate ASR more effectively than fly ash from the same source
- 2. Fly ash performance is more varied likely due to differences in particle size

ECOMATERIAL

HNOLOGIES

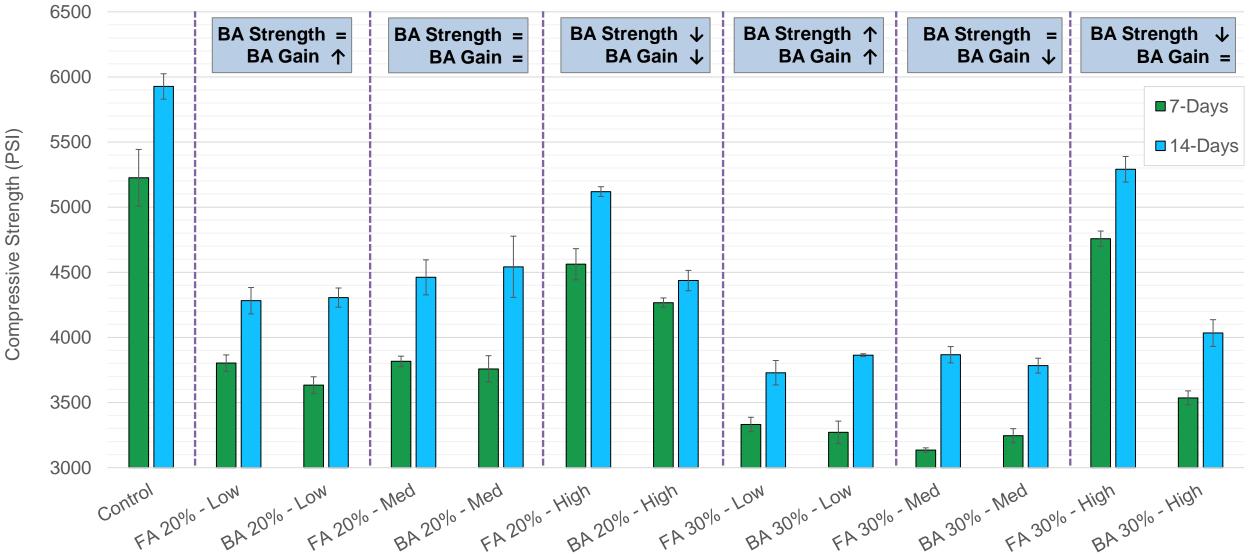
3. The ASR mitigation performance of processed bottom ash is, on the whole, similar to that of fly ash

Concrete – Ash Selection

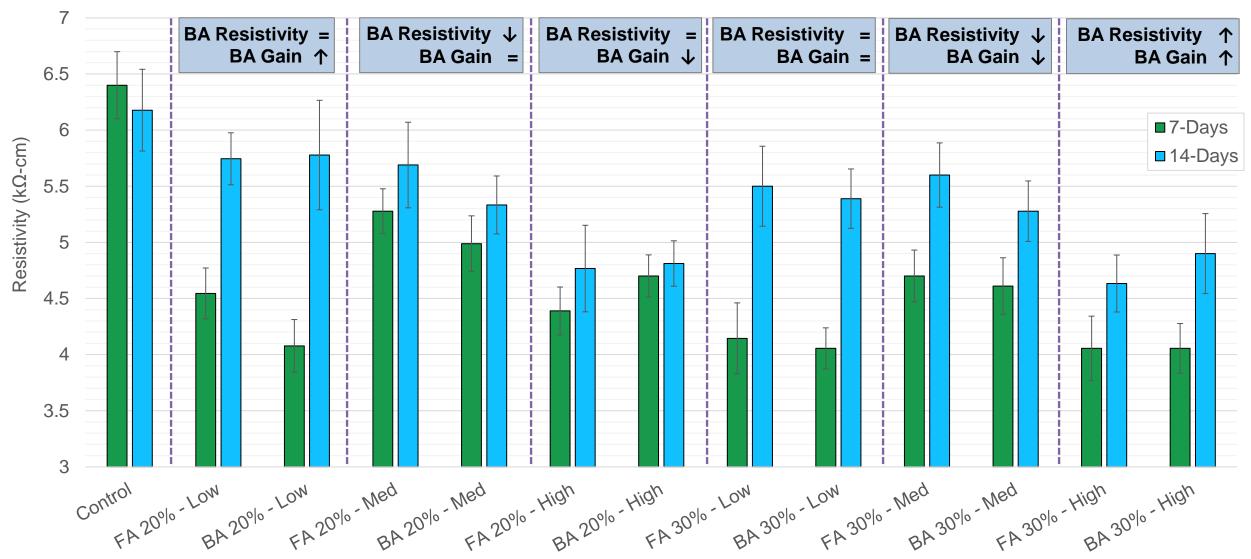
- 3 Ashes were chosen for concrete based on CaO content of the Fly Ash
- Concrete cylinders were set for compressive strength and resistivity via Wenner Probe

		Source	Label	CaO Content (%)	Fineness (%)	7-Day SAI (%)	28-Day SAI (%)
		Source 3	Low CaO	6.35	26.32	88	77.6
Fly As	sh	Source 6	Mid CaO	15.01	16.58	88.1	83.9
		Source 8	High CaO	28.14	10.66	113.3	108
		Source 3	Low CaO	5.98	9.49	77.4	82
Bottom Asl	Ash	Source 6	Mid CaO	8.45	9.9	86.9	81.7
		Source 8	High CaO	22.21	10.7	80.5	78.2

Concrete Mix Design


	GDoT Class A	Control	Fly Ash - Low CaO (20% / 30%)	Fly Ash - Mid CaO (20% / 30%)	Fly Ash - High CaO (20% / 30%)	Bottom Ash - Low CaO (20% / 30%)	Bottom Ash - Mid CaO (20% / 30%)	Bottom Ash - High CaO (20% / 30%)
Cement (lbs)	611 min	620	496 / 434	496 / 434	496 / 434	496 / 434	496 / 434	496 / 434
Ash (lbs)	011 11111	-	124 / 186	124 / 186	124 / 186	124 / 186	124 / 186	124 / 186
Water Content (lbs)	-	304	304	304	304	304	304	304
W/C Ratio	0.49 max	0.49	0.49	0.49	0.49	0.49	0.49	0.49
Coarse Agg (#57 stone lbs)	56, 57, 67 stone	1741	1741	1741	1741	1741	1741	1741
Fine Agg	-	1433	1399 / 1382	1406 / 1393	1419 / 1412	1420 / 1413	1405 / 1390	1423 / 1418
Water Reducer (oz/cwt)	-	10.5	5.9 / 5.0	6.7 / 5.9	5.9 / 5.1	6.7 / 6.7	8.4 / 8.8	7.6 / 6.7
Slump (inches)	2 - 4	4	3.25 / 2.25	3.5 / 2.25	3.25 / 3.25	3.5 / 2.75	3 / 2.25	4 / 2.5
Air Content (%)	6 max	1.6	1.6 / 2.0	2.0 / 2.3	1.6 / 1.9	1.9 / 1.9	1.7 / 1.8	1.4 / 1.6

- Concrete mix was designed to satisfy Georgia DoT's Class A General Use Concrete
- Bottom ash imparted a water reducing effect, although less so than fly ash



Concrete Performance – Compressive Strength

Concrete Performance - Resistivity

Conclusions and Future Work

Conclusions

- 1. Ground bottom ash is a reactive material that is suitable for use as a supplementary cementitious material when properly processed
- 2. The performance of bottom ash and fly ash is of a similar enough range as to not cause concern over potential blending or comingling

Future Work

- 1. Later age concrete data
- 2. Additional testing to better understand the role of calcium oxide in bottom ash
- 3. Investigation into the relationship between grinding/processing and performance

Thank You