ACI Convention, Orlando, Mar 27, 2022

Influence of Alkali Free Accelerators on the Early Age

Properties of 3D Printable Concrete

Shantanu Bhattacherjee, PhD Candidate Manu Santhanam, Professor With inputs from Adithya V S (Tvasta Manufacturing Solutions)

Outline

- Background and context
- Test methods for assessing buildability-related performance
- Use of alkali free accelerators different methods of application
- Use of the squeeze flow test for evaluation
- Alternative binder for buildability
- Portfolio of 3D printed structures

Background and context

- Critical parameters for 3D printing
 - Pumpability
 - Extrudability
 - Buildability
 - Evolution of mechanical properties
 - Geometric tolerance
- Buildability
 - Relates to the retention of geometry when subsequent layers are placed
 - Forms the link between the properties governing early age behaviour and the mechanical characteristics

Failure modes of 3D printed elements

With improved buildability, both failures can be overcome to a large extent...

Buildability depends on:

Rheological Performance

- Shear yield stress
- Recovery of original viscosity and yield stress before the deposition of next layer.
- Printing time gaps

Mechanical Performance

- Early age mechanical properties
- Time gap
- Compressive stress-strain behaviour with time Transition from plastic-flow to brittle failure (elastic).

Compression of layers in 3D printing – considering yield stress fluid

Both load profile and boundary condition are critical

STAN INSTR

OGY MAD

Test methods for assessment

- Vane shear test for yield stress measurement
- Flow table test for workability retention
- Penetration resistance test for setting time
- Forced bleed test for resistance to phase separation
- Squeeze flow test for link between rheological and very early age mechanical characteristics
- Early and later age compressive strength

Vane shear and forced bleed tests

Squeeze flow test

True strain = $ln(1 - \varepsilon)$ True stress = $\sigma_0(1 - \varepsilon)$

$$\sigma_{zz} = -p_0 - \sqrt{3\tau_y} + 3\eta(\sqrt{3}|\dot{\varepsilon}|)\dot{\varepsilon}$$

 P_0 – Ambient pressure τ_y – Yield stress of the material in simple shear η – Shear viscosity $\dot{\varepsilon}$ – Compression rate

Engmann et al. 2005

• Constant volume

Behaviour in the squeeze flow test

Measures to improve buildability

- Faster hardening cements
 - CSA binders
 - Rapid hardening cements
 - Limestone calcined clay cement
- Use of accelerating admixtures
 - Admixed
 - Added at the nozzle
 - Sprayed
- Increasing amount and size of aggregate

Study on alkali free accelerators

• Mix design

- Cement : Fly Ash (Type F) = 0.8:0.2
- Quartz sand (max size 2 mm) = 1.5
- Water to cementitious materials ratio = 0.32
- PCE based superplasticizer and HPMC VMA
- Alkali-free aluminium sulphate-based accelerator aluminium sulfate octadecahydrate (50 - 100%) and diethanolamine (2.5 – 10%)
- Mixing sequence

Flow table results

Mix	Time after mixing	Spread (%)	Reduction in spread with respect to initial flow (%)	Remarks
	Initial	80±3		Workable
Control mix (No accelerator)	After 30 mins	67±2	16.25	Workable
Mix with 1% accelerator	Initial	55±3		Workable
	After 30 mins	45±1	18.18	Workable
Mix with 2% accelerator	Initial	50±2		Workable
	After 30 mins	28±2	44	Very Stiff
Mix with 3% accelerator	Initial	40±2		Stiff
	After 30 mins	15±1	62.5	Very stiff

Vane shear results

Accelerator (%) by weight of the binder	Yield stress at 5 minutes (kPa)	Yield stress at 30 minutes (kPa)	Slope (considering linear rate) (kPa/min)
0 (Control mix)	1.75 ± 0.1	2.3 ± 0.1	0.022
1	2.5 ± 0.2	3.3 ± 0.35	0.032
2	2.7 ± 0.5	4.23 ± 0.45	0.061

Considering the pump can extrude a mix with static shear yield stress of around 2.5 kPa (Rahul et al. 2019):

- Mix with 2% accelerator might not get extruded properly.
- 2% accelerator cannot be added at the mixer
- Printable open time will be critical for accelerated mixes.

- Considering it takes 30 minutes to print 300 mm height cylinder.
- Shear stress at bottom will be 3.95 kPa.
- Which is more than the static yield stress of mix with 1% accelerator. 14

Forced bleed results (and flow after forced bleed)

Compressive strength

Accelerator dosage (%)	1-day Compressive strength (MPa)	28-day Compressive strength (MPa)
	Lab	Lab
0	8.4 ± 0.2	32.7 ± 2.9
1	9.8 ± 0.37	33.1 ± 3.2
2	10.41 ± 0.46	37.4 ± 1.0

Print trials

Print trials – vane shear and comp. strength

Accelerator	Time after	Vane shear initial static	28-day Compressive strength
dosage (%)	mixing (mins)	yield strength (kPa)	(MPa)
		print trials	print trials
0	5	1.73 ± 0.20	30.0 ± 1.5
	30	2.10 ± 0.35	
1	5	2.30 ± 0.32	31.2 ± 2.0
1	30	2.93 ± 0.49	
1.5	5	2.80 ± 0.37	33.6±1.0
	30	4.20 ± 0.49	
Note: The behavior	ur of mix with 1.5% acc	elerator dosage in the print trials is val	idated against 2% accelerator dosage in
the lab studies.			

Print trials – accelerator added in the mix

PISBTIRESTERIE

Print trials – addition at the nozzle

Pribagel conditionable esset setters the circle age tor

Print trials – accelerator sprayed on surface post-printing

Squeeze flow test

Different aspect ratio

- C1 0.68
- C2 0.6
- C3 0.55

Squeeze flow – stress-strain curve

True stress vs strain

Plastic flow hardening observed with accelerators

Cracking due to high stiffness

Use of limestone calcined clay cement

- Binder with 50% OPC, 30% calcined clay (with ~ 60% kaolinite), and 15% limestone, 5% gypsum
- Undergoes faster structural build up compared to mixes with plain cement – results from squeeze flow test presented below

LC2 – increase of aggregate-binder ratio

1.1 m high cylinder – aggregate/binder = 1.5

1 m high cylinder – aggregate/binder = 3

South of the children of the c

Conclusions

- The layer compression during printing plays a critical role in governing buildability of a structure
- Addition of accelerator helps in increasing the buildability of the printed structures different methods to include accelerator possible
- Squeeze flow test is promising with respect to evaluation of early age characteristics of 3D printable systems
- In addition to the yield stress, plastic flow hardening on addition of accelerator is considered to control the buildability of the mix

Portfolio of 3D printed structures

IMPRINT: IITM & Tvasta's first 3D structure

India's first 3D printed house at IIT Madras campus

OF TEC

OGY MADRA

Total 460 sqft area – sponsored by Habitat for Humanity

Doffing Units at Govt. Hospital – sponsored by St Gobain

OF TEC

OGY MADRA

Sanitary blocks at Indian Air Force, Jaisalmer

Guest House at Indian Air Force, Chiloda (Gandhinagar)

TE OF TECA

OGY MADRA

THAN INSTITUTE

Thank you!