Use of Ground Bottom Ash in Concrete

Origin of Bottom Ash and Use in Concrete

Benjamin Gallagher, PE Program Leader

ACI Concrete Convention March 27, 2022

Image: Market and the second secon

Future US Electricity – Business as Usual

U.S. electricity generation from selected fuels AEO2022 Reference case

billion kilowatthours

U.S. Energy Information Administration, Annual Energy Outlook 2022 (AEO2022) www.eia.gov/aeo

www.epri.com

© 2021 Electric Power Research Institute, Inc. All rights reserved.

2

What About U.S. Carbon Reduction Goals?

6000

U.S. Generation – 2035

EPRI 2021 Understanding Interactions Between Electricsector and Economy-wide CO2 Policies (3002021397)

www.epri.com

3

Options to Address Potential Shortfalls in SCM Availability

- Expand Use of "Off-Specification" Products
 - Bottom ash is rarely used as an SCM
 - Spray-dryer absorber materials often contain appreciable fly ash, provide functional benefits to concrete, and are currently underutilized
- Develop Harvesting from Existing Impoundments and Landfills
 - Some estimate 2 Billion tons of CCPs in storage in USA
 - 560 Ash Ponds Closing or Will Close
 - Fly ash and bottom ash are often comingled

US Coal Bottom Ash Sources

- Pulverized Coal Combustion
 - High combustion temp.
 - Small coal particle size
 - 10-20% of total ash is bottom ash
 - Boiler Bottom Design: Dry or Wet
 - Most widely used in US

- Cyclone Boiler Combustion
 - High combustion temp.
 - Large coal particle size
 - 80-90% of total ash is bottom ash
 - Boiler Bottom Design: Wet
 - Often used with low rank coal

- Fluidized Bed Combustion
 - Low combustion temp.
 - Moderate coal size
 - Bed ash sometime referred to as bottom ash
 - Often used with coal mining waste

Pulverized Coal Combustion (PCC)

- Mined coal is crushed, pulverized, and classified before combustion
- Typical specification for pulverized coal feed to burners:
 - 99% finer than 300 microns
 - 70% finer than 75 microns
- Coal is 80-90% combustible material, 10-20% ash minerals

Bottom Ash Handling

© 2021 Electric Power Research Institute, Inc. All rights reserved.

PCC Bottom Ash Tested

Power Station Information

- Generating capacity: 2.9 GW
- Subbituminous fuel (Powder River Basin)
- 4 subcritical boilers each ~ 7 MW
 - Dry bottom design
- Dry bottom ash handling

Bottom Ash Composition (wt %)										
SiO₂	CaO	AI_2O_3	Fe₂O₃	MgO	TiO₂	Na₂O	P_2O_5	SO ₂	K₂O	LOI
42.42	20.69	19.78	8.17	3.41	1.43	1.26	0.64	0.62	0.59	0.57

Ground Bottom Ash in Concrete

- EPRI 2020 "Performance-Based Mixture Proportioning of Concrete Incorporating Off-Spec Fly Ash: Mixture Proportioning Method Development and Validation" <u>3002018795</u>
- Included commercially ground bottom ash
 - D50 = 19 microns
- Research performed at Oregon State University
 - Lead by Dr. Isgor
 - Co-investigators Drs. Ideker, Trejo, and Weiss

Concrete Mix Designs

Concrete Application	Bridge deck mixture	Midwest pavement mixture (no reinforcement)	Foundation mixture	
Concrete Exposure	ACI 318: F3, S0, W0, C2 (Resistance to chloride ingress, corrosion, and freeze-thaw damage)	ACI 318: N/A (Resistance to CaOxy and freeze-thaw damage as specified by Indiana DOT [86])	ACI 318: F0, S1, W1, C0 (Moderate sulfate and ASR resistance)	
Strength, f'_c (56 day, min)	5000 psi [34 MPa]	4225 psi [29 MPa]	4000 psi [27 MPa]	
Slump (ACI 211 [1])	1–4 in (25–100 mm)	1–2 in (25–50 mm)	1–3 in (25–75 mm)	
Formation Factor, F _{APP} (56 day, min)	375	270	200	
Calcium Hydroxide CH (56 day)	10 g/100 g binder (min)	20 g/100 g binder (max)	N/A	
pH (56 day)	12.8 (min)	N/A	13.6 (max)	
Time to critical saturation, t _{cR}	30 years	30 years	N/A	

		Bridge Deck	Pavement	Foundation	
	Coarse aggregate	937	965	895	
	Fine aggregate	822	842	816	
	Cement	299	280	310	
EPRI Ash 3	Fly ash	75	70	78	
	Water	119	110	116	
	WRA	2160 (ml/m ³ concrete)	3024 (ml/m ³ concrete)	2450 (ml/m ³ concrete)	
	AEA	648 (ml/m ³ concrete)	756 (ml/m ³ concrete)	-	

	Slump (inches)	2.25	1.00	2.00
EDDI Ash 2	Unit Weight (kg/m³)	2195	2227	2371
EPRIASII S	Fresh Air Content	7.0%	6.5%	1.6%
	Temperature	22.8°C	21.1°C	18.3°C

Concrete Modeling Results

www.epri.com

Concrete Physical Test Results

14

www.epri.com

Grinding Time and Reactivity

- Dr. Bošnjak (Univ. Of Stuttgart) presented "Ground bottom ash as a supplementary cementing material" at EuroCoalAsh2021
- Included mortar strength results for bottom ash from Mann
 - Bituminous Fuel
 - Low Ca ash
 - Ground to 4 fineness (<10% retained on 45 micron, 10-20% retained, 25-30% retained and 40-45% retained)
 - 10, 20 and 30% cement replacement
- All mortars met strength requirements at 28 and 90 days
 - At 10 and 20% replacement, strengths were similar for all BA fineness
- At 30% replacement, 90-day mortar strength with ground BA at 40-45% retained was about 10% less than with ash ground to <10% retained
- How does BA reactivity in a pozzolanic reactivity test vary with grinding?
 - Ongoing Research lead by Dr. Ma at Missouri S&T university

Bottom Ash Grinding Time and Particle Size Distribution

www.epri.com

Preliminary Observations

Preliminary Observations

Together...Shaping the Future of Energy™

