

ACI 440 - Review of Design Guide Becoming Code in 2022

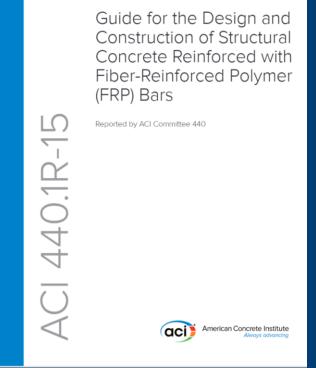
Presenter: Alicia Eikenberry, P.E.

Participant within ACI 440 Committee

Design Guide to Design Code

• Design Guide: PRC ACI 440.1-15

Written similar to an educational textbook Original Release Date: Committee Report in 1995


Design Code: CODE ACI 440

Written similar to ACI 318 Release Date: Estimated End of 2022

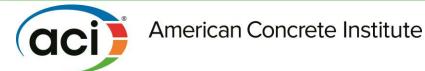
PRC 440.1-15

12 Chapters1 Chapter covers design examples1 Chapter of documents referencesAppendix A: Slab on Grade Temperature and Shrinkage Reinforcement

CODE 440

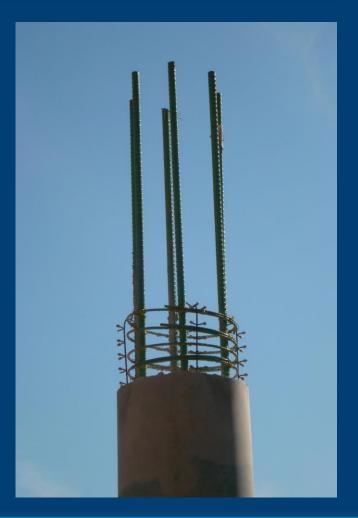
Same 27 Chapter layout as ACI CODE 318 6 Chapters (Do not Apply) i.e. Chapter 14: Plain Concrete ONLY ADDRESS GFRP REINFORCEMENT Does not include design examples

Cover Coming Soon



WHAT'S NEW IN CODE 440?

IT WILL ADDRESS:


- COLUMN
- WALLS

COLUMN DESIGN

• CHAPTER 10

Does not address Composite Columns No Shape Limit Limits Strain to $0.01E_f$ Addresses: Fire Rating Detail Requirements Reinforcement Limits Reinforcement Detail Requirement

WALL DESIGN

• CHAPTER 11

Applies to CIP and PreCast Limits to Shear for Ordinary Structural Walls Only Addresses: Minimum Wall Thicknesses Reinforcement Limits Reinforcement Detail Requirement

CURRENT PRC 440.1

Current Chapter 11 Examples in SI and Metric 11 Examples covering: **Flexural Beams One Way Slab Crack Control Reinforcement** Deflection

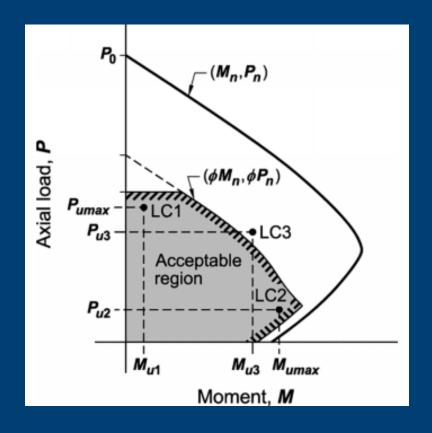
Creep Shear Bar Development

CODE 440.1 Column

• STEP 1

Determine Column Sizing and loading

<u>GFRP Modification:</u> No modifications See ACI Reinforced Concrete Design Handbook for example on a step by step process if not using a modeling software.

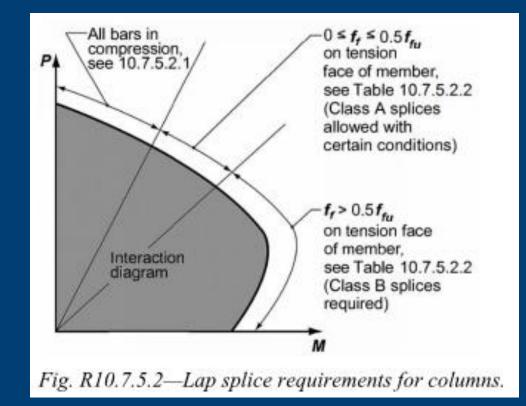


CODE 440.1 Column

• STEP 2

Find Required Area of Longitudinal Reinforcement

<u>GFRP Modification</u>: Factored axial compression Pu > 0.10 f'c Ag Tensile design strain of the GFRP longitudinal bars shall be limited to 0.01


CODE 440.1 Column

• STEP 3

Detailing

GFRP Modification:

- No offset bent longitudinal laps
- No current mechanical couplers available

CODE 440.1 Walls

• STEP 1

Determine Wall Thickness and loading

<u>GFRP Modification</u>:

New Table thickness for Bearing walls (4" to 5.5")

Table 11.3.1.1—Minimum wall thickness <i>h</i>			
Wall type	Minimum thickness h		
Bearing*	Greater of:	5.5 in.	(a)
		1/24 the lesser of unsupported length and unsupported height	(b)
Nonbearing	Greater of:	4 in.	(c)
		1/30 the lesser of unsupported length and unsupported height	(d)
Exterior basement and foundation*	7.5 in. (e)		(e)

CODE 440.1 Walls

STEP 2
Design Strength

<u>GFRP Modification</u>: Pn Equation 0.55 reduced to 0.45

$$P_{n} = \underbrace{0.45}_{c} A_{g} \left[1 - \left(\frac{k^{\ell}}{32h}\right)^{2} \right] (11.5.3.1)$$

CODE 440.1 Wall

• STEP 3

In Plane Shear

<u>GFRP Modification</u>: ACI 318: $Vn = 8 \sqrt{f'c} Acv$ For in-plane shear design, **h** is thickness of wall and **d** shall be taken equal to $0.8 \ell_w$.

V_n at any horizontal section shall not exceed 0.2f'c **h d**

CODE 440.1 Wall

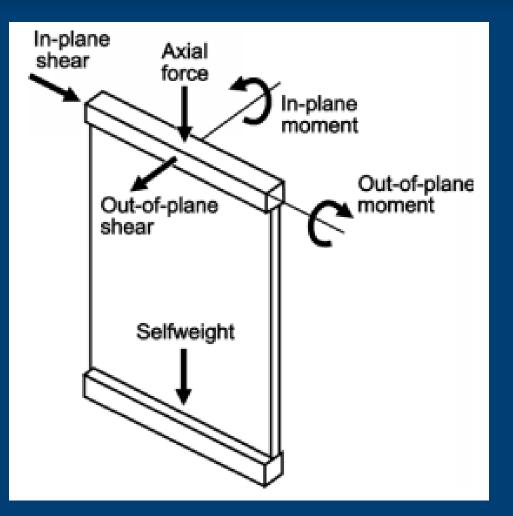
• STEP 3

In Plane Shear

<u>GFRP Modification</u>: ACI 318: $Vn = 8 \sqrt{f'c} Acv$ For in-plane shear design, **h** is thickness of wall and **d** shall be taken equal to $0.8 \ell_w$.

Vc = Vn + Vf

$$V_{f} = \frac{A_{fv} f_{fi} d}{s} \ (11.5.4.8)$$


Horizontal bars of walls subject to in-plane shear be limited to 0.005 under factored loads to control the shear crack width in GFRP reinforced concrete squat walls

CODE 440.1 Wall

• STEP 4 Out of Plane Shear

<u>GFRP Modification</u>: No modification

CODE 440.1 Wall

• STEP 5

Reinforcement Limits

<u>GFRP Modification</u>: ACI 318: $Vn = 0.5 \varphi \alpha_c \lambda \sqrt{f'c}_{Acv}$

- Refer to Table 11.6.1 for reinforcement limits for less than
- 0.0025 greater than

If in-plane Vu $\leq 0.5 \phi$ Vc, minimum ρ_{fl} and minimum ρ_{ft} shall be 0.0036

If in-plane Vu > 0.5 ϕ Vc, (a) and (b) shall be satisfied: (a) ρ_{fl} shall be at least 0.0055 but need not exceed ρ_{ft} required for strength (b) ρ_{ft} shall be at least 0.0055

CODE 440.1 Wall

• STEP 5

Reinforcement Limits

GFRP Modification:

ACI 318:

s spacing shall not exceed 5h or 18" (exterior) or 30" (interior) Spacing s of longitudinal bars in walls shall not exceed the lesser of 3h and 12 in. If shear reinforcement is required for in-plane strength, spacing of GFRP longitudinal reinforcement shall not exceed $l_w/3$

For the most up-to-date information please visit the American Concrete Institute at: www.concrete.org

