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Linear Elastic Fracture Mechanics
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There are three types of loading that a crack can experience. 

Mode I loading tends to open the crack. 

Mode II loading tends to slide one crack face with respect to the other. 

Mode III refers to out-of-plane shear. 
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Linear Elastic Fracture Mechanics
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British aeronautical engineer A. A. Griffith noticed that in presence of a crack the 

stress value cannot be used as a criterion of failure!

𝜎22 =
𝐾𝐼
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When the crack propagates: 

𝐾𝐼 = 𝐾𝐼𝑐 𝜎 = 𝜎𝑁
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Cohesive Crack Model
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In its simplest form the cohesive crack model was introduced by Barenblatt

(1962) and Dugdale (1960) to represent the nonlinear process located at the 

front of the crack.

In 1976 Hillerborg et al. extended the concept of cohesive crack for concrete  

(fictitious crack)
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Cohesive Crack Model
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Hillerborg considered two essential points:

1) After the peak all the deformation (almost) localizes into the crack

2) The evolution of the crack without a pre-existing crack

BL L w = +
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Cohesive Crack Model
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The softening curve is the main ingredient of the cohesive crack model!

( )
0

FG f w dw


= 

The cohesive fracture energy is the external energy supply required to 

create and fully break a unit surface area of cohesive crack
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Non-Linear Elastic Fracture Mechanics
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Let’s consider softening
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Non-Linear Elastic Fracture Mechanics
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Fracture Process Zone
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Size Effect
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Progress in the modeling of concrete fracture and introduction of fracture concepts into design codes and practice 
has been impeded by the unavailability of a comprehensive database for fracture alone. The literature features a 
vast number of fracture data, but they all cover only rather limited ranges of specimen size, initial notch depth, 
and postpeak response and have been performed on different concretes, on different batches of supposedly the 
same concrete, at different ages, at different environmental conditions, at different rates, with different test 
procedures, and on specimens of different types and dimensions. Combining all these data produces a database 
with enormous scatter and makes the modeling highly ambiguous because the effect of these differences is 
understood much less than the fracture itself.

According to linear elastic fracture mechanics (LEFM), which applies to homogeneous perfectly 

brittle materials, and for geometrically similar structures with similar cracks

𝜎𝑁 ∝
1

𝐷
𝐾𝐼𝑐 = 𝜎𝑁 𝐷𝑘 𝛼

This is the strongest possible size effect
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Size Effect

11

For quasi-brittle materials such as concrete, one can distinguish two simple types of size effect.

Type II Type I
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Size Effect
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For nonprestressed members, Vc shall be calculated

in accordance with Table 22.5.5.1 and 22.5.5.1.1

through 22.5.5.1.3.
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Experimental work

Coarse aggregate: Carey Limestone, with the maximum aggregate diameter of 10 mm 

Water-cement ratio: 0.4 

Entrapped air: 2.5% 

Two slump tests were performed, one of them at the beginning of the casting process 
(114.3 mm) and the second at the end (69.85 mm).

Casting date: 11/22/2019

Three-point bending tests of notched beams

5 depths were tested: 75 mm, 150 mm, 250 mm, 500 mm, 1000 mm 
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Material

Days

Average elastic

modulus (GPa) 

(CoV%)

28 30.2 (1.74%)

56 32.2 (4.09%)

84 33.8 (1.66%)

112 34.7 (3.43%)
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Test setup
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P/2 P/2P=90kN

1220 mm

Stiffener

Specimen

Clip on gauge

LVDT

LVDT holder

W 16×50 

UH, max=0.0045mm

UV, max=0.13mm

L=1000 mm

S=750 mm

D=250 mm

Test setup
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Plexiglas balls

Shaking table

Specimen

L=4064 mm

S=3048 mm
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Specimen Depth = 500 mm Specimen Depth = 1000 mm
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Concrete Specimen After Test:

Dry surface

Crack not aligned 

with notch tip and 

ligament

Crack aligned 

with notch tip 

and ligament
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Wet surface

Actual 

crack

Notch

Notch
Specimen Depth =1000 mm
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Load responses (P-CMOD)
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CMOD Calculations of elastic modulus

Specimens
(GPa)

FM_75_150_x 30.9

FM_150_150_x 32.3

FM_250_150_x 34.5

FM_500_150_x 34.1

FM_1000_150_x 37.8

Days Average elastic

modulus (GPa) (CoV)

28 30.2 (1.74%)

56 32.2 (4.09%)

84 33.8 (1.66%)

112 34.7 (3.43%)
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Load responses (P-δ)
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Fracture Energy, GF

Specimens GF (N/m)

FM_75_150_x 49.29

FM_150_150_x 83.10

FM_250_150_x 99.20

FM_500_150_x 153.51

FM_1000_150_x 93.68

Specimens tested with 

higher rate (20x)
GF (N/m)

FM_75_150_x 57.76

FM_150_150_x 107.99

FM_250_150_x 129.04
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Digital image correlation (DIC): Setup

Specimen
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speckle
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DIC camera
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DIC setup for 
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depth = 500 mm

23



Christian Carloni

cxc966@case.edu

corresponds 

to tensile 

strength

DIC analysis: Specimen FM 75_150_6 (Subset - 41; Step - 10)

Strain at tensile 

strengthLigament 

strain at 

ligament

Baietti, G., Quartarone G., Carabba, L., Manzi, S., Carloni C., Bignozzi, M.C. (2020). Use of Digital 

Image Analysis to Determine Fracture Properties of Alkali-Activated Mortars. Engineering 

Fracture Mechanics, 240, https://doi.org/10.1016/j.engfracmech.2020.107313
24
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Size Effect Curve
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How to model

•Cohesive crack model is a good tool

• Lattice Discrete Particle Model

•Other numerical models

•Cohesive hinge

26
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Cohesive Hinge Model
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Cohesive hinge model
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What if I have a structure with fixed ends?
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Conclusions

• Fracture mechanics can be used to predict size effect

•Material properties can be obtained from size effect tests

•DIC analysis used to determine the size of the FPZ 

• Size effect plot confirms the trend of SEL

•A cohesive hinge model can be calibrated to determine the size 

effect trend
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What is in the future

•Test even larger sizes or thicker elements

•The test method can be extended to shear strength of plain 

concrete

•Different concretes can be studied to analyze the effect of 

aggregates and effect of SCM
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Thank You!


