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Statistical learning?

Plato’s allegory of the cave (ca. 2,400 years old):

Apps

Users 

(society)

Data 

science

That’s artificial 

intelligence!
Data

Statistics

Plenty of terms, plenty of overlap: 

data science, data analytics, big data, data mining, multivariate analysis, 

machine learning, artificial intelligence…

Optimization of FRC mixes

• Implications:

• Workability and variability are not 

‘associates’: they are ‘partners’.

• Shift to a multivariate perspective, taking 

advantage of correlations.

• Variability is not a problem but a source of 

information  data mining.

• Objectives:

• Exhaustive database with mix proportionings and characterization results from papers.

• Predictive models for residual flexural strength parameters and their variability.

• Statistical analysis of all four dimensions above by means of multivariate techniques.

• Software ‘OptiFRC’ for visualization and interpretation of database and utilization of the 

predictive models for mix optimization.

• Project “Optimization of Fiber-Reinforced Concrete using Data Mining” funded by 

CRC / ACI Foundation.

• Articulating principle: proportioning FRC mixes as a multiobjective optimization problem.
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Optimization of FRC mixes

OUTLINE OF THE PROJECT

1. Literature search and descriptive 

analysis.

2. Development of database of FRC mixes 

and characterization test results.

3. Meta-analysis of FRC proportionings.

4. Meta-analysis of FRC residual flexural 

capacity.

5. Development of multivariate quality 

control charts.

6. Development of software OptiFRC.

The database

Data structure (variables 

in the database):

Cement_kgm3

Water_kgm3

Binder_Kgm3

SCMs_kgm3

LSP_kgm3

GGBS_kgm3

SF_kgm3

PFA_kgm3

Sand_kgm3

Gravel_kgm3

MaxAggSize_mm

Slump_mm

SlumpSpread_mm

SlumpFlowTable_mm

Age_days

CompStrength_Mpa

TestType

LOP_MPa

fR1_Mpa

fR2_MPa

fR3_MPa

fR4_MPa

Retarder_kgm3

AirEntrainer_kgm3

HRWR_kgm3

VMA_kgm3

Vf_%

FibreLength_mm

FibreDiameter_mm

FibreAspectRatio

FibreStrength_Mpa

FibreContent_kgm3

Mix proportioning variables Properties

Steel FRC dataset

766 cases
Synthetic FRC dataset

1053 cases
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Modelling the relationships between 

mix proportioning variables
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Overview

RELATIONSHIPS BETWEEN PROPORTIONING VARIABLES

• Focus: relationships that exist between FRC mixtures in terms of the 

relative amounts of their constituents and their main descriptors.

Contents of cement, sand, etc (kg/m3)

Fiber volume fraction (%)

Maximum aggregate size (mm)

Fiber material (steel, PP, etc)

Fiber length (mm)

Fiber aspect ratio
• Objectives:

• Analysis: to visualize and understrand trends in one variable when others change.

• Modelling: quantification of mix proportioning variables as a function of others.

• Method: multiple linear regression.
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Overview

REGRESSION MODELS: SPECIFICATION

• Alternative definitions trialled for different variables, including for example:

• Total binder = cement + SCMs, total aggregates = fine + coarse aggregate

• Ratios: water/cement, water/binder, fine/coarse aggr. ratio.

• Fiber contents in kg/m3 instead of volume fraction and fiber material

• Model specification selected based on: goodness of fit (i.e. accuracy of resulting 

equations), interpretability, and robustness of the models.

RELATIONSHIPS BETWEEN PROPORTIONING VARIABLES

• Focus: relationships that exist between FRC mixtures in terms of the 

relative amounts of their constituents and their main descriptors.

Contents of cement, sand, etc (kg/m3)

Fiber volume fraction (%)

Maximum aggregate size (mm)

Fiber material (steel, PP, etc)

Fiber length (mm)

Fiber aspect ratio
• Objectives:

• Analysis: to visualize and understrand trends in one variable when others change.

• Modelling: quantification of mix proportioning variables as a function of others.

• Method: multiple linear regression.

Coarse/fine aggr. ratio

JUSTIFICATION

• Practical first approximation as descriptor of aggregates grading.

• ~ Cohesiveness of the mix  informative in relation to fresh state performance.

STATISTICAL MODELLING

• Good correlation with coarse aggregate content in both datasets:

Steel FRC dataset Synthetic FRC dataset



07/04/2021

6

Coarse/fine aggr. ratio

STATISTICAL MODELLING

• In addition to the coarse aggregate content, the max. aggregate size and fiber material 

also have a statistically significant impact on coarse/fine aggr. ratio.

• Simple equations with very high goodness of fit (R2 = 0.92 and 0.87).

Max. Agg. Size (mm)

Coarse aggr. 

(kg/m3)
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Max. Agg. Size (mm)

Coarse aggr. 

(kg/m3)
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e

Steel FRC: Synthetic FRC:

Coarse aggregate content

JUSTIFICATION

• Together with the coarse/fine aggr. ratio, it is representative of the volume of aggregates.

• Why not fine aggregate, or total aggregates?

• Models for coarse aggregate proved more robust: goodness of fit, simple specification.

• Interactions with max.agg.size and fiber length were most clear (interpretability) when 

the model was based on coarse aggregate content.

STATISTICAL MODELLING

• Equations obtained (R2 = 0.76 and 0.61):

• Coarse aggr. content as a function of maximum aggregate size, fiber volume fraction, 

fiber length and aspect ratio.

• Fitted coefficients are different for steel FRC and synthetic FRC.

• Statistically significant interactions between fiber volume fraction, length and aspect 

ratio, and maximum aggregate size.
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Coarse aggr. content in SFRC

COARSE AGGREGATE CONTENT, STEEL FIBER LENGTH AND DOSAGE

• For low to medium fiber dosages (up to 0.4-0.7%), the coarse aggregate content is not 

remarkably sensitive to changes in fiber length and generally within 800-850 kg/m3.

• For high to very high fiber dosages (>1%), coarse aggregate contents are generally within 

800-850 kg/m3 as long as the fiber length is between 35 and 45 mm. 

• That is also the case for fiber dosages up to 1%, for fiber lengths between 30 and 50 mm.

𝜕𝐺

𝜕𝑉𝑓
= 0 → 𝑙𝑓 = 35 − 45

𝜕𝐺

𝜕𝑙𝑓
= 0 → 𝑉𝑓 = 0.4% − 0.7%

Coarse aggr. content in SFRC

COARSE AGGREGATE CONTENT, STEEL FIBER LENGTH AND DOSAGE

• For low to medium fiber dosages (up to 0.4-0.7%), the coarse aggregate content is not 

remarkably sensitive to changes in fiber length and generally within 800-850 kg/m3.

• For high to very high fiber dosages (>1%), coarse aggregate contents are generally within 

800-850 kg/m3 as long as the fiber length is between 35 and 45 mm. 

• That is also the case for fiber dosages up to 1%, for fiber lengths between 30 and 50 mm.

• Short fibers (~30 mm and shorter) in moderate to high dosages are generally associated with 

lower coarse aggregate contents  mixtures with more sand and paste to be more cohesive.
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Binder content

JUSTIFICATION

• It is representative of the finer constituents of the mixture.

• Why not cement and SCMs separately? Some reasons:

• The water-to-binder ratio is a defining parameter of the mixture.

• The model for total binder turned out to be the most robust: goodness of fit, simple 

specification.

STATISTICAL MODELLING

• The equations obtained showed very good fit to data (R2 = 0.90 and 0.84):

• Binder content as a function of fine and coarse aggregate contents, and maximum 

aggregate size.

• Quadratic effects and statistically significant interactions between these terms.

• Why are the fibers dimensions and their dosage not in the equations? Don’t they have an 

‘effect’ on the binder content in a FRC mixture?

A DATA-DRIVEN PROPORTIONING METHOD

• Why are the fibers dimensions and their dosage not in the equations? Don’t they have an 

‘effect’ on the binder content in a FRC mixture?

• By organising the equations in sequence, a sort of FRC mix proportioning method begins 

to emerge:

m.a.s. Vf(%), Lf/df, Lf

Coarse agg (kg/m3)

Coarse/Fine ratio

Sand (kg/m3)

Binder (kg/m3)

Three equations, one model
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A DATA-DRIVEN PROPORTIONING METHOD

• Why are the fibers dimensions and their dosage not in the equations? Don’t they have an 

‘effect’ on the binder content in a FRC mixture?

Yes, because they influence the aggregate contents!

• By organising the equations in sequence, a sort of FRC mix proportioning method begins 

to emerge:

m.a.s. Vf(%), Lf/df, Lf

Coarse agg (kg/m3)

Coarse/Fine ratio

Sand (kg/m3)

Binder (kg/m3)

Three equations, one model

Residual flexural strength parameters 

as a function of mix proportions

OVERVIEW OF THE PRESENTATION

Introduction
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Modelling the residual flexural strength

Closing remarks
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Overview

MODELLING RESIDUAL FLEXURAL STRENGTH

• Focus: relationships that exist between 

fR1, fR2, fR3 and fR4 and the FRC mix 

proportioning variables.

• Method: multiple linear regression for each residual flexural strength parameter.

• Objectives:

• Analysis: visualising and understranding trends, with a particular focus on statistically 

significant interactions.

• Modelling: fRi estimates as a function of mix proportioning.

Overview

MODELLING RESIDUAL FLEXURAL STRENGTH

• Focus: relationships that exist between fR1, fR2, fR3 and fR4 and the FRC mix proportioning 

variables.

• Method: multiple linear regression for each residual flexural strength parameter.

SPECIFICATION OF THE MODELS

• Several alternative specifications were trialled.

• What I was trying to achieve when developing the models:

• Compromise between goodness of fit (R2) and degrees of freedom (number of terms).

• Same model structure (i.e. format of the equation) for the four residual parameters.

• Same model structure for steel and synthetic datasets (different coefficients).

• Good performance of models obtained: R2 values between 0.75 and 0.85.

• Objectives:

• Analysis: visualising and understranding trends, with a particular focus on statistically 

significant interactions.

• Modelling: fRi estimates as a function of mix proportioning.
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Modelling

MODELLING RESIDUAL FLEXURAL STRENGTH

• General equation of the model obtained:

𝒌𝟎 + 𝑘1
𝑮

𝑺
+ 𝑎0 + 𝑎1𝑀𝐴𝑆 𝑳𝒇 + 𝑏0 + 𝑏1𝐶𝐸𝑀 + 𝑏2𝐻𝑅𝑊𝑅 + 𝑏3𝜆𝑓 + 𝑏4𝐿𝑓 𝑽𝒇

+ 𝑘2 𝑺𝑪𝑴𝒔+ 𝑘3 𝑯𝑹𝑾𝑹+ 𝑘6𝑪𝑬𝑴+ 𝑐1 𝐶𝐸𝑀 + 𝑐2 𝑆𝐶𝑀𝑠 + 𝑐3 𝐺/𝑆 𝑨𝑮𝑮𝑹

𝑓𝑅,𝑖 =

• Coefficients take different values for each residual flexural strength parameter.

• Coefficient k0 depends on test configuration (3- or 4-point) and specimen (notched or not).

• All other coefficients (colored in red) depend on the fiber material.

• The equation above is in fact a compact representation of dozens of equations:

• It makes interpretation and understanding easier, and is the result of trying to find a common 

model specification that fits well the values of all four parameters.

Fiber aspect ratio (SFRC)

• Increasing the aspect ratio has a clear positive impact on residual flexural strength for 

moderate to high fiber contents.
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Fiber aspect ratio (SFRC)

• Increasing the aspect ratio has a clear positive impact on residual flexural strength for 

moderate to high fiber contents.

• Changing the aspect ratio does not affect fR1 or fR2 when the fiber content is 0.3%-0.4%.

0.1616 𝑉𝑓 − 0.0679 = 0 → 𝑽𝒇 = 0.42% 0.2179 𝑉𝑓 − 0.077 = 0 → 𝑽𝒇 = 0.35%

Fiber aspect ratio (SFRC)

• Increasing the aspect ratio has a clear positive impact on residual flexural strength for 

moderate to high fiber contents.

• Changing the aspect ratio does not affect fR1 or fR2 when the fiber content is 0.3%-0.4%.

• Do we need high fiber dosages to get better-than-average performance? No.

• With aspect ratios between 60 and 80, fiber contents in the region of 0.6%-0.8% 

are generally enough to get better-than-average residual flexural strength.

• Minimum fiber contents to get better than average performance as a function of 

the fiber aspect ratio can be obtained:

𝜆𝑓 = 60 → 𝑉𝑓 ≥ 0.69%

𝜆𝑓 = 80 → 𝑉𝑓 ≥ 0.56%
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STATISTICAL LEARNING

• Equations / software ‘learn’ from the data, but the treatment and modelling of data is a 

fantastic resource to help us learn and better understand the material.

DATABASE AND MIX PROPORTIONINGS

• A database of almost 2,000 cases has already been compiled, ‘cleaned’ and analysed.

• The regression models obtained to describe the correlations between mix proportioning 

parameters are robust and show good fit with data. They are:

• Useful to obtain reliable estimates of the contents of different constituents. 

• A powerful tool to better understand the interplay of the different parameters.

• The three semi-empirical equations represent a data-based mix proportioning rationale for 

guiding design of FRC mixes.

RESIDUAL FLEXURAL STRENGTH MODEL

• A unified predictive model has been obtained for all four residual flexural strength parameters 

in steel and synthetic FRC mixes. 

• This model shows good fit with data and captures the effect of the most significant 

interactions between fiber content, size of fibers and aggregates, and the contents of all 

constituents.
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