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Statistical learning? srsncaomiae N \VERSITY OF LEEDS

Plenty of terms, plenty of overlap:

data science, data analytics, big data, data mining, multivariate analysis,
machine learning, artificial intelligence...

Plato’s allegory of the cave (ca. 2,400 years old):
L0 ) £ e ) £ 0 ) e e e e e ) e e e e ) e e e e e e e e e e e e e

That’s artificial
intelligence!

Data

science B Users
(society)
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Optimization of FRC mixes scomensies  (NIVERSITY OF LEEDS

Project “Optimization of Fiber-Reinforced Concrete using Data Mining” funded by
CRC / ACI Foundation.
Articulating principle: proportioning FRC mixes as a multiobjective optimization problem.

Implications: Workability

Workability and variability are not
‘associates’: they are ‘partners’.

Shift to a multivariate perspective, taking
advantage of correlations. Compressive FRC mix Flexural

T strength proportioning strength
Variability is not a problem but a source of
information - data mining.

Variability

Objectives:

Exhaustive database with mix proportionings and characterization results from papers.
Predictive models for residual flexural strength parameters and their variability.
Statistical analysis of all four dimensions above by means of multivariate techniques.

Software ‘OptiFRC’ for visualization and interpretation of database and utilization of the
predictive models for mix optimization.
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Data structure (variables
in the database):

Steel FRC dataset
766 cases

CEM type
reported
58.1%

amw
e [ f

camm
17%

Cement_kgm3
Water_ kgm3
Binder_Kgm3
SCMs_kgm3
LSP_kgm3
GGBS_kgm3
SF_kgm3
PFA_kgm3
Sand_kgm3
Gravel_kgm3

MaxAggSize_mm

Retarder_kgm3
AirEntrainer_kgm3
HRWR_kgm3
VMA_kgm3

VE_%
FibreLength_mm
FibreDiameter_ mm
FibreAspectRatio
FibreStrength Mpa
FibreContent kgm3

Slump_mm
SlumpSpread_mm
SlumpFlowTable mm
Age_days
CompStrength_Mpa
TestType

LOP_MPa

£R1_Mpa

£R2_MPa

£R3_MPa

£R4_MPa

Mix proportioning variables

Synthetic FRC dataset
1053 cases

Recycled PET
24%

CEM I
30%

CEMIl =
16%

==

Steel
N7%
cemnpn /
= reperied 76%
PVA3.7%

High Density Polyethylene 0.6%

[ Notreported 0.3%
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Overview A Tonme b=k UNIVERSITY OF LEEDS
RELATIONSHIPS BETWEEN PROPORTIONING VARIABLES
» Focus: relationships that exist between FRC mixtures in terms of the

relative amounts of their constituents and their main descriptors.

Contents of cement, sand, etc (kg/m3) Maximum aggregate size (mm)

Fiber volume fraction (%) Fiber material (steel, PP, etc)
Fiber length (mm)
. Objectives: Fiber aspect ratio
» Analysis: to visualize and understrand trends in one variable when others change.
* Modelling: quantification of mix proportioning variables as a function of others.

* Method: multiple linear regression.

Cement kgm3 Slump mm

Water kgm3 slunp;p.:gd_m

Binder Kgm3 SlumpFlowTable mm

SCMs_kgm3 Age days

CompStrength Mpa

VE_% TestType
FibreLength mm LOP_MPa
FibreDiameter mm £R1 Mpa

sand_kgm3 FibreAspectRatio £R2_MPa

Gravel kgm3 fR3 MPa

MaxAggSize_mm £R4_MPa

07/04/2021



Overview praien e vt NIVERSITY OF LEEDS

{sate gmouns mn deserptors

REGRESSION MODELS: SPECIFICATION

« Alternative definitions trialled for different variables, including for example:
» Total binder = cement + SCMs, total aggregates = fine + coarse aggregate
» Ratios: water/cement, water/binder, fine/coarse aggr. ratio.
» Fiber contents in kg/m?3 instead of volume fraction and fiber material

* Model specification selected based on: goodness of fit (i.e. accuracy of resulting
equations), interpretability, and robustness of the models.

Coarse/fine aggr. ratio Fsn G e (NIVERSITY OF LEEDS

JUSTIFICATION
» Practical first approximation as descriptor of aggregates grading.

~ Cohesiveness of the mix = informative in relation to fresh state performance.

STATISTICAL MODELLING
» Good correlation with coarse aggregate content in both datasets:

Steel FRC dataset Synthetic FRC dataset
2
20
.
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; e 3 4
4 ) 9 i
£ . 25 i. T
8 . Ve L ‘E_ :':_ .
oS L) - s - *
00 . oo
6 @ w0 w0 w0 w0 wm e o ™ @ @ @ wn m ue
Gravel kgm3 Gravel kgm3
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Coarse/fine aggr. ratio e e NIVERSITY OF LEEDS

STATISTICAL MODELLING

» In addition to the coarse aggregate content, the max. aggregate size and fiber material
also have a statistically significant impact on coarse/fine aggr. ratio.

» Simple equations with very high goodness of fit (R?2 = 0.92 and 0.87).

Steel FRC: Synthetic FRC:

Coarse / Fine
Coarse / Fine

25

15

800 800
Coarse aggr. Coarse aggr. 700

(kg/m?) $0s Max. Agg. Size (mm) (kg/m?) 0 5 Max. Agg. Size (mm)
Coarse aggreg ate content SR UNIVERSITY OF LEEDS

JUSTIFICATION
» Together with the coarse/fine aggr. ratio, it is representative of the volume of aggregates.
*  Why not fine aggregate, or total aggregates?
* Models for coarse aggregate proved more robust: goodness of fit, simple specification.

» Interactions with max.agg.size and fiber length were most clear (interpretability) when
the model was based on coarse aggregate content.

STATISTICAL MODELLING
+ Equations obtained (R? = 0.76 and 0.61):

« Coarse aggr. content as a function of maximum aggregate size, fiber volume fraction,
fiber length and aspect ratio.

» Fitted coefficients are different for steel FRC and synthetic FRC.

« Statistically significant interactions between fiber volume fraction, length and aspect
ratio, and maximum aggregate size.
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Coarse ag g r. content i n SFRC pre Soene R NIVERSITY OF LEEI:;S

COARSE AGGREGATE CONTENT, STEEL FIBER LENGTH AND DOSAGE

For low to medium fiber dosages (up to 0.4-0.7%), the coarse aggregate content is not
remarkably sensitive to changes in fiber length and generally within 800-850 kg/m3.

For high to very high fiber dosages (>1%), coarse aggregate contents are generally within
800-850 kg/m? as long as the fiber length is between 35 and 45 mm.

That is also the case for fiber dosages up to 1%, for fiber lengths between 30 and 50 mm.

—=0 -1l =35-45

)|I Gravel_kgm3
{f < 550

aG

E=0 - Vr=04%—-07% <«—"
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1
1
1
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FibreLength_mm
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Coarse ag g r. content i n SFRC et o I UNIVERSITY OF LEESS

COARSE AGGREGATE CONTENT, STEEL FIBER LENGTH AND DOSAGE

For low to medium fiber dosages (up to 0.4-0.7%), the coarse aggregate content is not
remarkably sensitive to changes in fiber length and generally within 800-850 kg/m3.

For high to very high fiber dosages (>1%), coarse aggregate contents are generally within
800-850 kg/m? as long as the fiber length is between 35 and 45 mm.

That is also the case for fiber dosages up to 1%, for fiber lengths between 30 and 50 mm.

Short fibers (~30 mm and shorter) in moderate to high dosages are generally associated with
lower coarse aggregate contents - mixtures with more sand and paste to be more cohesive.

2.0
Gravel_kam3
< 550

1.0

Vf_%

> 1050

0.5

0.0

10 20 30 40 50 6
FibreLength_mm
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Binder content presenConenstas ) NIVERSITY OF LEEDS

JUSTIFICATION
+ ltis representative of the finer constituents of the mixture.
*  Why not cement and SCMs separately? Some reasons:
» The water-to-binder ratio is a defining parameter of the mixture.

« The model for total binder turned out to be the most robust: goodness of fit, simple
specification.

STATISTICAL MODELLING
* The equations obtained showed very good fit to data (R2 = 0.90 and 0.84):

« Binder content as a function of fine and coarse aggregate contents, and maximum
aggregate size.

» Quadratic effects and statistically significant interactions between these terms.

* Why are the fibers dimensions and their dosage not in the equations? Don’t they have an
‘effect’ on the binder content in a FRC mixture?

: (aci® n
Three equations, one model Fresconk e NIVERSITY OF LEEDS

A DATA-DRIVEN PROPORTIONING METHOD

»  Why are the fibers dimensions and their dosage not in the equations? Don’t they have an
‘effect’ on the binder content in a FRC mixture?

* By organising the equations in sequence, a sort of FRC mix proportioning method begins
to emerge:

m.a.s. Vi(%), Li/d;, L¢

=TT

1\
Coarse/Fine ratio
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Th ree eq uations , ONE MO d el AT UNIVERSITY OF LEED:

A DATA-DRIVEN PROPORTIONING METHOD

*  Why are the fibers dimensions and their dosage not in the equations? Don’t they have an
‘effect’ on the binder content in a FRC mixture?

Yes, because they influence the aggregate contents!

» By organising the equations in sequence, a sort of FRC mix proportioning method begins
to emerge:

m.a.s. Vi(%), Li/d;, L¢

Coarse agg (kg/m?3)

Coarse/Fine ratio

\

Binder (kg/m3)
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MODELLING RESIDUAL FLEXURAL STRENGTH 1 o onalty (1) edual flewral siengih

Focus: relationships that exist between

proportioning variables.

fr1s Troy frg @nd fg, and the FRC mix

e}

pi

e e

3-point: EN 14651:2005 r“’_ ~

Equivalent stress (MPa)

CMOD,=0.5 CMOD;=15 CMOD,;=25 CMOD,=3§

4-point: ASTM C1609/1609M CMOD, crack width or opening, w (mm)

Method: multiple linear regression for each residual flexural strength parameter.

Objectives:

» Analysis: visualising and understranding trends, with a particular focus on statistically

significant interactions.

» Modelling: fg; estimates as a function of mix proportioning.

Cement_kgm3
Water_ kgm3
Binder_Kgm3
SCMs_kgm3
LSP_kgm3
GGB3_kgm3
SF_kgm3
PFA_kgm3
Sand_kgm3
Gravel kgm3
MaxAggSize mm

Retarder_kgm3
AirEntrainer_kgm3
HRWR_kgm3
VMA_kgm3

VE_%
FibreLength mm
FibreDiameter mm
FibreAspectRatio
FibreStrength Mpa
FibreContent kgm3

£R1_Mpa
£R2_MPa
fR3_MPa

£R4_MPa

Mix proportioning variables

Overview
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MODELLING RESIDUAL FLEXURAL STRENGTH

Focus: relationships that exist between fg,, fr,, fr; and fz, and the FRC mix proportioning

variables.

Method: multiple linear regression for each residual flexural strength parameter.

Objectives:

* Analysis: visualising and understranding trends, with a particular focus on statistically

significant interactions.

* Modelling: fg; estimates as a function of mix proportioning.

SPECIFICATION OF THE MODELS

Several alternative specifications were trialled.

What | was trying to achieve when developing the models:

» Compromise between goodness of fit (R?) and degrees of freedom (number of terms).

« Same model structure (i.e. format of the equation) for the four residual parameters.

« Same model structure for steel and synthetic datasets (different coefficients).

Good performance of models obtained: R2 values between 0.75 and 0.85.

07/04/2021
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Modellin g AT Seme e UNIVERSITY OF LEED!

MODELLING RESIDUAL FLEXURAL STRENGTH
» General equation of the model obtained:

G
fri= ko+iky st (ag + a;MAS) Ly + (bo + byCEM + b,HRWR + b3As + byL¢) V¢
+ k, SCMs + k; HRWR + k CEM + (¢, CEM + ¢, SCMs + ¢; G/S) AGGR
« Coefficients take different values for each residual flexural strength parameter.
+ Coefficient k, depends on test configuration (3- or 4-point) and specimen (notched or not).
» All other coefficients (colored in red) depend on the fiber material.

* The equation above is in fact a compact representation of dozens of equations:

3p notched 3p- notched 3-p— notched 3p- netched

steel unnotched steel unniotched steel unnotched steel unnotched
a-p- notched p notched ap notched 4p- noiched

unnotched unnoiched unnolched unnolched
3p- notched 3p- notched 3p- notched 3p. notched

PP unnetched PP unnalched PP unnotched PP unnolched
4p notehed ap- naotched 4p. notched 4-p. notched

R unnotched  fR2 unnotched R ¢ unnotched fRd ¢ unnatched
3p notched 3p--— notched 3p— nolched 3p-<— notched

PO- unnotchest PO unnolched PO- unnotched FO- unnatched
4p notched ap natched 4-p—— notched A= notched

unnotched unnotched unnotched unnotched
3p—— notched 3p natched 3~ notched 3p—— noiched

PVA unnotched PVA. unnotched PVA unnotched PVA- unnotched
4p notched 4p— noiched 4 notched 4-p—— noiched

unnotched unnaiched unnolched unnolched

» It makes interpretation and understanding easier, and is the result of trying to find a common
model specification that fits well the values of all four parameters.

‘aci ® i

Fi b er as p ect rat i 0 (S FR C) et o I UNIVERSITY OF LEESS

* Increasing the aspect ratio has a clear positive impact on residual flexural strength for
moderate to high fiber contents.

FibreAspectRatio
3 3

FibreAspectRatio
3

8
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Fiber aspect ratio (SFRC) poesenComiovse N IVERSITY OF LEEDS

» Increasing the aspect ratio has a clear positive impact on residual flexural strength for
moderate to high fiber contents.

» Changing the aspect ratio does not affect fz, or fz, when the fiber content is 0.3%-0.4%.

0.1616 V; — 0.0679 = 0 = V¢ = 0.42% 0.2179V; — 0.077 = 0 > V; = 0.35%

3

FibreAspectRatio
g

FibreAspectRatio
3

(aci ® Imﬂ

UNIVERSITY OF LEEDS

Fiber aspect ratio (SFRC)

» Increasing the aspect ratio has a clear positive impact on residual flexural strength for
moderate to high fiber contents.

» Changing the aspect ratio does not affect fz, or fz, when the fiber content is 0.3%-0.4%.

ing

» Do we need high fiber dosages to get better-than-average performance? No.

» With aspect ratios between 60 and 80, fiber contents in the region of 0.6%-0.8%
are generally enough to get better-than-average residual flexural strength.

* Minimum fiber contents to get better than average performance as a function of
the fiber aspect ratio can be obtained:

Ap =80 - Vs = 0.56%

A =60 > V; > 0.69%

FibreAspectRatio

FibreAspectRatio

07/04/2021
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STATISTICAL LEARNING

« Equations / software ‘learn’ from the data, but the treatment and modelling of data is a
fantastic resource to help us learn and better understand the material.

DATABASE AND MIX PROPORTIONINGS
» Adatabase of almost 2,000 cases has already been compiled, ‘cleaned’ and analysed.

* The regression models obtained to describe the correlations between mix proportioning
parameters are robust and show good fit with data. They are:

» Useful to obtain reliable estimates of the contents of different constituents.
« A powerful tool to better understand the interplay of the different parameters.

» The three semi-empirical equations represent a data-based mix proportioning rationale for
guiding design of FRC mixes.

RESIDUAL FLEXURAL STRENGTH MODEL

» Aunified predictive model has been obtained for all four residual flexural strength parameters
in steel and synthetic FRC mixes.

» This model shows good fit with data and captures the effect of the most significant
interactions between fiber content, size of fibers and aggregates, and the contents of all
constituents.

07/04/2021
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