Flexural Performance of Dually Reinforced 3D Concrete Printed Beams

M. van den Heever, F. A. Bester, P.J. Kruger, G.P.A.G. van Zijl

Division for Structural Engineering and Civil Engineering Informatics, Department of Civil Engineering, Stellenbosch University, Stellenbosch, 7602, South Africa.

Marchant van den Heever

PhD Candidate BEng Civil

RESEARCH FOCUS:

Structural performance of modular 3D concrete printed components under moderate seismic action

Selecting Suitable Reinforcement Strategies

Cumulative number of papers relating to respective reinforcement strategies

Selected Strategies

1. Entrained fibres

- Most publicised strategy
- High level of compatibility
- Ease of application

2. Permanent formwork

- 3rd most publicised strategy
- Most often implemented in practice
- Readily available

Dual Reinforcement Strategy

6mm entrained HM-PP microfibres

FRPC mixture constituent proportions

Constituent	kg
PPC Suretech CEM II/A-L 52.5 N	562
Durapozz Fly Ash (Class F)	162
Micro Silica Fume	81.4
Fine Aggregate (Malmesbury)	1144
Water	256
Superplasticizer	0.6% by binder mass
VMA	0.3% by binder mass
6 mm HM-PP Microfibres	1% by mixture volume

HM-PP microfibre properties

Description	Value
Young's Modulus (E _f)	30 GPa
Yield Stress (f _t)	1200 MPa
Diameter (d)	15 µm
Length (L)	6 mm

Y10 in-laid conventional reinforcement

Loading Configurations

Configuration 1

Summary of dimensions used

Dim.	Value	Units	Dim.	Value	Units
а	280	mm	е	502	mm
b	338	mm	h	260	mm
с	25	mm	w	260	mm
d	230	mm	L	840	mm

Configuration 2

Member & LVDT Frame

Experimental Results

Configuration 3

- Ultimate bending capacity = 45.3 kN.
- Maximum mean mid-span deflection = **7.4 mm**.
- Strain-softening post-peak response displayed.
- Symmetric single vertical bending crack.
- **3.6 x** Amplified load-carrying capacity.

1.

- No noticeable bond-slip or pull out between rebar & printed matrix.
 - 103 kN: Diagonal shear crack, thus shear dominant failure.
- 2. **164 kN**: Limited deformability of printed matrix \rightarrow Strain localisation \rightarrow rebar yields.
- **3.** Multiple smaller flexural cracks: Increased deformation + strain redistribution.
- 4. Interlayer delamination: Excessive deformation & curvature.
- 1. 93 kN: Diagonal shear crack, thus shear dominant failure.
- 2. 124 kN: Vertical bending crack \rightarrow rebar yields \rightarrow plateau.
- 3. Interlayer delamination: Excessive deformation & curvature.
- 4. Smaller flexural cracks: Increased deformation + strain redistribution.
- 5. Brittle ult. failure: shear-flexure crack: lack of shear links.
- 6. Horizontal crack: debonding due to cracking, large curvature & reduced contact area on location of rebar placement.

Numerical Simulation Frameworks

Expected Failure Mechanisms in 3DCP Elements

Continuum Model

2D Plane Stress Simplification

Calculating the Effective Plane Stress Thickness

$$t = \frac{A_{\sec A-A}}{h} = \frac{42727}{260} = 164 mm$$
$$\Delta_{CF} = \frac{L_{w,eff}}{L_{w}} = \frac{26}{30} = 0.86$$
$$t_{eff} = \Delta_{CF} \cdot t = 141 mm$$

6/12

Numerical Simulation Parameters: Continuum Model

Model Description:

To exploit the **anisotropic Rankine-Hill continuum model** available in the **DIANA FEA** package, two elastic parameters (E, v), seven strength parameters (f_{tx} , f_{ty} , f_{cx} , f_{cy} , α , β , and γ), and five inelastic parameters (G_{fx} , G_{fy} , $G_{fc,x}$, $G_{fc,y}$, and κ_p) are required.

Summary of Parameters						
Isotropic Elastic Parameters						
E	21.9	GPa	V	0.2	-	
Orthotropic Strength Parameters						
x-direction				y-direction		
f _{tx}	2.45	N/mm ²	f_{ty}	1.25	N/mm ²	
f _{cx}	45.1	N/mm ²	f _{cy}	38.2	N/mm ²	
Unitless Strength Parameters						
α	0.35	β	-1	Y	0.525	
Orthotropic Inelastic Parameters						
Crack bandwidth User S		Specified				
G _{fx}	0.956	N/mm	G _{fy}	0.063	N/mm	
G _{fc,x}	27.07	N/mm	$G_{fc,y}$	26.17	N/mm	
Kn	0.002	mm/mm				

van den Heever et al., Mechanical Characterisation for Numerical Simulation of Extrusion-based 3D Concrete Printing, Journal of Building Engineering, in Review, 2021a.

Shear stress contribution to tensile failure

$$\alpha = \frac{f_{tx} \cdot f_{ty}}{\tau_u^2}$$

 τ_u is the interface shear-slip (Mode 2) capacity equal to 2.96 MPa Shear stress contribution to compressive failure

$$\gamma = \frac{f_{cx} \cdot f_{cy}}{\tau_u^2}$$

 τ_u is the material pure shear (Mode 2) strength equal to $1.5f_{c,y}$ MPa Coupling of normal stress values for compressive failure

 $\beta = -1$

Default assumed in the absence of experimental data

Numerical Simulation Parameters: Discrete Interface-based Model

Model Description:

The combined-cracking-shearing-crushing (CCSC) interface model available in DIANA FEA is implemented to define the IRs in the 3DCP composite. The intralayer filaments are prescribed an isotropic hypo-elastic total strain-based rotating crack (TSC) constitutive relation, also available in the DIANA FEA package.

Interface Parameters (CCSC)			Continuum Parameters (TSC)		
Parameter	Value	Units	Parameter	Value	Units
f _{t,j}	1.25	N/mm ²	E	21900	N/mm ²
G ^I _{f,i}	0.063	N/mm	v	0.2	-
C _c [°]	2.96	N/mm ²	ρ	2.15E-06	T/mm ³
Friction angle (φ)	36.87	degree	Crack orientation	Rotating	
Dilatancy angle (ψ)	0	degree	Tensile curve	Exponential	
Res. friction angle (ϕ_r)	36.87	degree	f _t	2.45	N/mm ²
Conf. normal stress	-1	N/mm ²	G ^I f	0.956	N/mm
Exp. Deg. Coeff.	1	-	Crack bandwidth	User specified	
G ^{II} _{fc}	0.296	N/mm	Poisson ratio reduction	Damage based	
G _{cc}	26.17	N/mm	f _c	45.1	N/mm ²
k _{nc}	1.00E+06	N/mm ³	G _{cc}	27.07	N/mm
k _{sc}	4.17E+05	N/mm ³	Reduction due to lateral cracking		
C _{ss,j}	3.5	-			NO
f _{c,j}	38.2	N/mm ²	Confinement increase		No
<u>Кр</u>	0.01	N/mm ²			

Summary of Parameters

van den Heever et al., Numerical Modelling Strategies for Reinforced 3D Concrete Printed Elements, Additive Manufacturing, in Review, 2021b.

Numerical Simulation Results: Continuum Model

Numerical Simulation Results: Discrete Interface-based Model

10/12

Conclusions

- Both entrained fibre & in-laid reinforcement methods are compatible with 3DCP
- In-laid reinforcement provides 3.6 x amplified load-carrying capacity (p_s = 0.43%) attributed to strain-hardening, displays sufficient bond and anchorage, permitting strain redistribution and providing ductility.
- Strain-softening in observed for the singularly reinforced beam while strain-hardening for dually reinforced member
- Pure bending of singularly reinforced members is accurately simulated by both numerical simulation strategies (peak load capacity < 4% & excellent agreement shown in cracking patterns and softening regimes).
- Pure bending of dually reinforced members is accurately simulated by both numerical simulation strategies (peak load capacity < 9% & respectable agreement shown in cracking patterns and post-peak regimes).
- Reasonable agreement is observed under eTPB (exhibiting a maximal load capacity <= 14%).
- From the numerical results it is evident that the shear stress is over estimated and additional experimental calibration is required.
- The similarities in both the force-displacement response and crack patterns attained across all simulations indicate that the respective FE simulation strategies apply to 3DCP

Flexural Performance of Dually Reinforced 3D Concrete Printed Beams

M. van den Heever, F. A. Bester, P.J. Kruger, G.P.A.G. van Zijl

Division for Structural Engineering and Civil Engineering Informatics, Department of Civil Engineering, Stellenbosch University, Stellenbosch, 7602, South Africa

