Modeling of Extrusion-Based 3D Printing of Cementitious Materials

Narayanan Neithalath
Professor
School of Sustainable Engineering and the Built Environment
Arizona state university, Tempe, AZ
Narayanan.Neithalath@asu.edu
http://neithalath.engineering.asu.edu

Contributions from: Sooraj A.O. Nair, Pu Yang, Hussam Alghamdi, Manu Santhanam, Gaurav Sant

Presented at the ACI Spring Convention 2019, Quebec City, Canada
Extrusion Based Additive Manufacturing
Concrete 3D Printing: Fresh state concerns

- Extrudability and Buildability (Printability)
- Open time - its influence on pumping and extrusion;
- Setting and layer cycle-time - influence on vertical build rate;
- Deformation, instabilities as successive layers are added;
- Liquid phase migration (LPM)
Particle packing effects

- Particle packing in the microstructure influences printability
- Selection of materials guided by extrudability and the ability to sustain overburden pressure

\[\kappa = \frac{N_d \cdot CN_{avg}}{MCD * 100} \] (\(\mu m^{-4}\))
Slip in paste extrusion

- Slip – result of depletion of solid particles from the wall
 - Slip layer (lubrication layer); $V_{\text{liquid}} = 0$
 - Particles crowd and lock in place, reducing Brownian motions that disturb the slip layer
 - A function of volume fraction of particles
 - Brownian motion enabled at low volume fractions
 - Importance of microstructural packing
 - Packing factor as a printability design parameter

Presented at the ACI Spring Convention 2019, Quebec City, Canada
Printing of cement-based materials

• Issues with inadequate print quality – fresh state
 • Liquid phase migration under layer built up
 • Inhomogeneous print
 • Insufficient layer stability under overburden pressure

- Slumping of printed mixture
- Instability issue (warping)
- Squeezing of bottom layers
- No edge retention
Some of the printable mixtures for model validation

<table>
<thead>
<tr>
<th>Mixture ID</th>
<th>Mass fraction of ingredients</th>
<th>Water-to-powder ratio (w/p), by mass</th>
<th>Superplasticizer (% by mass of powder)</th>
<th>Solid volume fraction (φ)</th>
<th>Microstructural index (φ/d₅₀²) x 10³ μm⁻²</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPC</td>
<td>OPC; Fly ash (F); Limestone (L); d₅₀ = 1.5 µm; Microsilica (M); Metakaolin (K)</td>
<td>0.32</td>
<td>0</td>
<td>0.403</td>
<td>2.64</td>
</tr>
<tr>
<td>F₃₀</td>
<td>0.70</td>
<td>0.30</td>
<td>0</td>
<td>0</td>
<td>0.30</td>
</tr>
<tr>
<td>L₃₀</td>
<td>0.70</td>
<td>0</td>
<td>0</td>
<td>0.41</td>
<td>0</td>
</tr>
<tr>
<td>L₃₀M₁₅</td>
<td>0.70</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.445</td>
</tr>
<tr>
<td>L₃₀₅</td>
<td>0.70</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.35</td>
</tr>
</tbody>
</table>

- **70% OPC + 15% SF + 15% LS (1.5 µm)**
- **70% OPC + 10% SF + 10% LS (1.5 µm)**
- **70% OPC + 5% MK + 5% SF + 20% LS (1.5 µm)**
Modeling extrusion printing: Linkages between particle scale effects and processing

• Phenomenological modeling
 • Extrusion pressure linked to pressures in the barrel and the die, and the velocity of extrusion

• Analytical models
 • For frictional plastic materials

• Computational models
 • Discrete element method (DEM) simulations
Ram extrusion of cementitious materials

- Pre-consolidation
- Plastic deformation – extrusion flow
- Static “dead zone” region that forms the outer shell for extrusion near the die-entry
Extrusion cell

Presented at the ACI Spring Convention 2019, Quebec City, Canada
Force Balance

- Stage 1: Both plug flow and shaping zones; plastic and frictional yield stresses constant (do not evolve with axial stress)

- Stages 2 and 3: yield stresses change with particle rearrangement and LPM
Extrusion – Geometric Ratio

\[
\psi = 1 + \frac{L_{\text{die}}}{d_{\text{exit}}} - \frac{d_{\text{entry}}}{D}
\]

<table>
<thead>
<tr>
<th>Designation and details of die geometries</th>
<th>Orifice</th>
<th>Uniform die</th>
<th>Tapered die</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration</td>
<td>-</td>
<td>O10</td>
<td>N10-10</td>
</tr>
<tr>
<td>Designation</td>
<td>-</td>
<td>O4</td>
<td>N4-4</td>
</tr>
<tr>
<td>Entry diameter, (d_{\text{entry}}) (mm)</td>
<td>10</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>Exit diameter, (d_{\text{exit}}) (mm)</td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Length of die, (L) (mm)</td>
<td>0</td>
<td>0</td>
<td>36</td>
</tr>
<tr>
<td>Geometric ratio, (\psi) unitless</td>
<td>3.5</td>
<td>8.75</td>
<td>16.1</td>
</tr>
</tbody>
</table>

Presented at the ACI Spring Convention 2019, Quebec City, Canada
Analytical model: Frictional Cohesive Material Model

\[p(z) = \gamma \left(\frac{\alpha \tau_0}{\beta} e^{\frac{\beta z}{d_{\text{barrel}}}} \left(e^{\frac{\beta z}{d_{\text{barrel}}}} - 1 \right) + \sigma_0 \right) + 4 L_{\text{die}} \frac{d_{\text{die}}}{d_{\text{barrel}}^2} \tau_{\text{die}} \]

\(\gamma \) - Hill’s coefficient
\(\alpha, \beta \) - Friction parameters

- Total force expressed as a sum of axial plastic shaping force and a frictional force
- Considering force balance in a strip of paste moving along the barrel under a compressive force
Analytical model – Geometry effects on pressure

- Attempt to link material properties (rheology etc.) to processing parameters (extruder geometry)
Dead zone formation

- Static zone formed at the bottom of the barrel when material forced under pressure

- Material does not move in this zone - forms the outer shell for extrusion near the die entry

- Particle optimized mixtures

Presented at the ACI Spring Convention 2019, Quebec City, Canada
Shaping stress and wall shear stress

- Stresses tend to plateau out at higher geometric ratios
- Related to the length of dead zone at higher geometric ratios
- Wall shear much lower than shaping stress

- Shaping stress, the controlling geometry-linked design feature, can be predicted
Robustness under extrusion

• Ratio of predicted extrusional yield stress to the measured shear yield stress
• Processed vs. virgin property
• Relationship with geometric ratio shows robustness of mixtures with the best packing
DEM Simulations of Extrusion

• Burger’s model is employed to describe the particle-scale contact behavior
• Contains a Kelvin model and a Maxwell model in both normal and shear directions
• Acts over a vanishingly small area and can only transmit force
• Sustains both compressive and tensile forces
• Mohr-Coulomb law limits the shear behavior
Model Description

- Force-displacement equation

 \[
 - f + \left[\frac{C_k}{K_k} + C_m \left(\frac{1}{K_k} + \frac{1}{K_m} \right) \right] \ddot{f} + \frac{C_k C_m}{K_k K_m} \dot{f} = \pm C_m \ddot{u} \pm \frac{C_k C_m}{K_k} \dddot{u}
 \]

- The total displacement \(u \) is the sum of the displacement of the Kelvin section (\(u_k \)) and Maxwell section (\(u_{mK} \) and \(u_{mC} \))

 \(u = u_k + u_{mK} + u_{mC} \)

- The force at a given step is determined by a finite difference scheme

 \[
 - f^{t+1} = \pm \frac{1}{C} \left[u^{t+1} - u^t + \left(1 - \frac{B}{A} \right) u_k^t \mp D f^t \right]
 \]

- The force-displacement law for the Burger’s model consists two steps:

 - Updating the normal force
 - Updating the shear force with the following sequence: (a) update shear force, (b) update shear strength, (c) update the linear shear force and (d) update the slip state

\(C_k \) - viscosity of Kelvin section
\(C_m \) - viscosity of Maxwell section
\(K_k \) - stiffness of Kelvin section
\(K_m \) - stiffness of Maxwell section
\(f \) - force
\(u \) - total displacement
\(A = 1 + \frac{K_k \Delta t}{2C_k} \)
\(B = 1 - \frac{K_k \Delta t}{2C_k} \)
\(C = \Delta t \left(\frac{1}{2C_k A} + \frac{1}{K_m} + \frac{\Delta t}{2C_m} \right) \)
\(D = \Delta t \left(\frac{1}{2C_k A} - \frac{1}{K_m} + \frac{\Delta t}{2C_m} \right) \)
Simulation of 3D printing
Die entry pressure

Side walls used to monitor the force

Presented at the ACI Spring Convention 2019, Quebec City, Canada
Velocity Evolution
Force Evolution
Dead zone formation
Summary/Conclusions

• Modeling helps to understand the materials-processing linkages better – mixture and process optimization

• Analytical and numerical models accurately capture: (i) the steady state pressure at which extrusion occurs, and (ii) the sudden increase in pressure corresponds to the dead zone

• Steady state pressures can be used to infer the energy required for extrusion-based printing - contributes to the design of appropriate extrusion-based printing systems

• Dead zone lengths decrease with improved microstructural packing and printability

• Dead zone lengths can be used as a convenient metric to evaluate the printability of the mixtures and the quality of the print

• Particle-scale aspects can be captured using the DEM model, to accurately design the material and the printing system
Acknowledgements