New Generation of High-Range Water Reducers

Presenter: Suzanne Lianopoulos
Authors: Thomas Vickers & Suzanne Lianopoulos
New Generation HRWR’s

- New performance space still possible decades after initial PCE discovery
- Value to producers beyond performance in concrete

Dispersant (Dispersing Agent): Material added to a solid in liquid suspension to separate flocculated particles, under shearing forces, into individually suspended particles and to reduce their natural tendency to re-associate.
PCE Basics

- Key structural features of a PCE dispersant
 - Main chain
 - Side chain
 - Charge centers
- Purposeful modifications to key structural features enable new areas of performance
 - Faster cement dispersion
 - Less sensitivity to changes in cement chemistry
Experiment- Materials

- **Concrete Materials**
 - High Alkali Cement
 - ~23,000 ppm soluble SO$_4$\(^{2-}\)
 - Low Alkali Cement
 - ~3,800 ppm soluble SO$_4$\(^{2-}\)
 - Class F Fly Ash
 - Fine Aggregate (natural sand)
 - Coarse Aggregate (crushed limestone)

- **Cement Dispersants**
 - PCE1 (faster dispersion)
 - PCE2 (general purpose)

Experiment- Mix Design

<table>
<thead>
<tr>
<th></th>
<th>Design 1</th>
<th>Design 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement (lbs/yd3)</td>
<td>850</td>
<td>675</td>
</tr>
<tr>
<td>F-Ash (lbs/yd3)</td>
<td>0</td>
<td>130</td>
</tr>
<tr>
<td>Fine Agg (lbs/yd3)</td>
<td>1275</td>
<td>1275</td>
</tr>
<tr>
<td>Coarse Agg (lbs/yd3)</td>
<td>1740</td>
<td>1740</td>
</tr>
<tr>
<td>Water (lbs/yd3)</td>
<td>275</td>
<td>275</td>
</tr>
<tr>
<td>Air (%)</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
Results - High Alkali Cement

Concrete Workability With Mix Time
High Alkali Cement

Concrete Workability With Mix Time
High Alkali Cement + F Ash

PCE1 Dosage
0.225% of cmts

PCE2 Dosage
0.300% of cmts

PCE1 Dosage
0.180% of cmts

PCE2 Dosage
0.210% of cmts

• Fastest Workability generation
• Lower dosage requirement
• Less sensitive to changes in mix
Results- Low Alkali Cement

Concrete Workability With Mix Time
Low Alkali Cement

Concrete Workability With Mix Time
Low Alkali Cement + F Ash

PCE1 Dosage
0.125% of cmts

PCE2 Dosage
0.130% of cmts

PCE1 Dosage
0.110% of cmts

PCE2 Dosage
0.150% of cmts

Performance advantages observed across multiple cement chemistries
Advancements in PCE’s provide benefits beyond the concrete

Improved Concrete Performance
- Faster workability generation
- Promotes concrete consistency

Improved Robustness
- Reduced sensitivity to changes in cement
- Ability to produce more high performance concrete

Operational Efficiencies
- Enables faster batching processes
- Increased overall concrete production potential
Capturing the Value - Example

<table>
<thead>
<tr>
<th></th>
<th>Standard PCE</th>
<th>PCE 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average batch size (yd³ or m³)</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Average hours per work day</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>% of mixtures using HRWR</td>
<td>20%</td>
<td>20%</td>
</tr>
<tr>
<td>1 - Position truck under mixer</td>
<td>Minutes</td>
<td>Minutes</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2 - Mix concrete</td>
<td>3.25</td>
<td>1.5</td>
</tr>
<tr>
<td>3 - Discharge concrete</td>
<td>0.75</td>
<td>0.5</td>
</tr>
<tr>
<td>4 - Truck exits chute</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>Total time</td>
<td>5.75</td>
<td>3.75</td>
</tr>
<tr>
<td>Batches per hour</td>
<td>10.4</td>
<td>16.0</td>
</tr>
<tr>
<td>yd³ or m³ per hour</td>
<td>104.3</td>
<td>160.0</td>
</tr>
</tbody>
</table>

Production Increase

- % increase: 53%
- Additional batches per hour: 1.11
- Additional yd³ or m³ per hour: 11.13
- Additional batches per day: 13.4
- Additional yd³ or m³ per day: 133.6

New Generation HRWR technology enables a 53% increase in production!

- Establish Baseline
- Capture *ACTUAL* field performance
- Assess your “as-is” situation
- See the impact
- Quantify the value to your operations
Capturing the Value - Case Study, Inventory Precast

<table>
<thead>
<tr>
<th></th>
<th>Evaluation 1</th>
<th>Evaluation 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard PCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average batch size (yd³ or m³)</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Average hours per work day</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>% of mixtures using HRWR</td>
<td>75%</td>
<td>75%</td>
</tr>
<tr>
<td>PCE 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average batch size (yd³ or m³)</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Average hours per work day</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>% of mixtures using HRWR</td>
<td>75%</td>
<td>75%</td>
</tr>
<tr>
<td>Minutes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 - Position truck under mixer</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2 - Mix concrete</td>
<td>3</td>
<td>2.6</td>
</tr>
<tr>
<td>3 - Discharge concrete</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4 - Truck exits chute</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total time</td>
<td>3</td>
<td>2.6</td>
</tr>
<tr>
<td>Batches per hour</td>
<td>20.0</td>
<td>23.1</td>
</tr>
<tr>
<td>yd³ or m³ per hour</td>
<td>80.0</td>
<td>92.3</td>
</tr>
</tbody>
</table>

- Baseline Established
- Mixing time savings in both evaluations
- No change to discharge time
- 15-50% increase in production
- 26-75 more batches/day

New Generation HRWR technology enables producer to increase production volume by 26 and 75 additional batches per day!
Advances in PCE’s still yield impactful results

Faster Workability generation and decreased sensitivity to changes in cement

Value to producer beyond concrete properties & performance

Operational efficiencies yield increased profit potential
Thank you

For the most up-to-date information please visit the American Concrete Institute at:
www.concrete.org