

Chemical Admixtures for blended cements: More problems or more solutions?

Sirajuddin Moghul, Franco Zunino, Robert J. Flatt ETH Zurich, Switzerland presented by <u>Timothy Wangler</u>

Part 1: Background on Superplasticizers

Yield stress

 Yield stress can be viewed as a solid-liquid phase transition that takes place if enough interparticle bonds can be broken for the system to flow

Adsorption

Steric Repulsion

Surface coverage versus layer thickness

Affinity is key

Surface coverage controlled

Layer thickness controlled

Superplasticizers in blended cements

Part 2: Evidence of flow loss in superplasticized LC3

How serious and fast can flow loss be?

The problem with (some) LC3

- Initial dosages adjusted for same flow spread
 - Higher dosages for LC3
- Flow lost much faster with LC3 than OPC

Schematic illustration of OPC and LC3 flow retention

Part 3: Explaining flow loss in superplasticized LC3

What mechanism causes loss of fluidity?

Experimental Setup

Mixing at 1600 rpm for 2 mins

1600 rpm for 2 mins

mixing water

Evolution of specific surface area

S. Moghul et al (submitted)

Adsorption of PCE over time

S. Moghul et al (submitted)

Evolution of specific surface area

S. Moghul et al (submitted)

Adsorption of PCE over time

Change in adsorption versus change in specific surface area

Relative change in SSA, Δ SSA (m²/g)

Change in adsorption versus change in specific surface area

Part 4: A pragmatic solution to flow loss in LC3

Can flow loss be mitigated? If so, how?

Approach to solving flow loss

- Based on previous findings, two approaches can be considered
 - Adding a polymer that does not adsorb initially, but only later in time
 - Should have higher affinity for newly formed surfaces
 - Does not solve the issue at its root
 - Potentially requires high dosages
- Blocking the initial reactivity
 - PCEs do not seem to do this effectively
 - Look at other chemical structures that might do this

PCEs versus single chain diphosphonate superplasticizers

PCEs

Di-Phosphonates

- Single chains
- Steric hindrance
- Strongly retarding
- Specialty product for oil well cement

Dosage dependent flow and flow retention

- 0.4% too low
- 0.7% too high (segregation)

Dosage dependent flow and flow retention

- 0.4% too low
- 0.7% too high (segregation)
- 0.5% good compromise
 - Slightly higher starting yield stress
 - Similar flow retardation

Hydration kinetics of LC3 with DP

- 0.5% good compromise for flow
- But excessive retardation
- Combine DP and PCE?

Flow of PCE and DP combinations

Similar flow and flow retention

Hydration kinetics of LC3 with PCE-DP combinations

Superplasticizers in blended cements

Conclusions

- Flow loss of superplasticized LC3 is a direct result of rapid formation of additional surfaces
- Covering those surfaces compensates flow loss
 - Polymers with delayed adsorption may help
 - Dosage response is probably low
- Blocking the early reactivity, probably of the calcined clays is promising
 - Diphosphonates appear to do this effectively
 - Combined with PCE they offer good flow and flow retardation, without excessive retardation

Thank you for your kind attention

