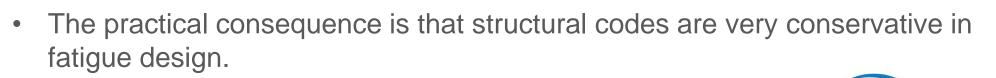
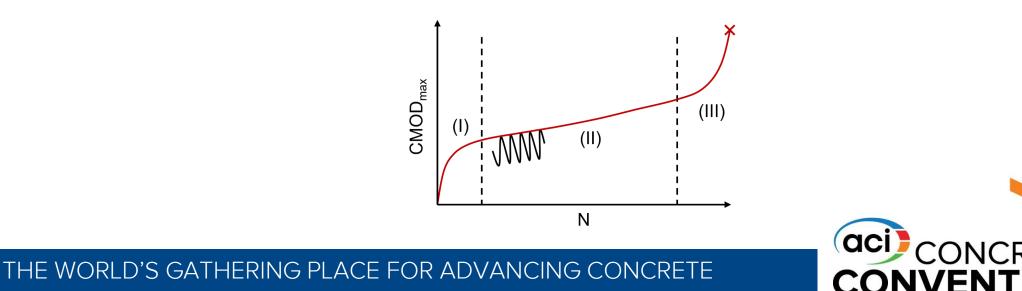

Damage mechanisms in fiber-reinforced concrete subjected to flexural fatigue through the analysis of cyclic creep curves


A. Mena-Alonso, M.A. Vicente, J. Mínguez and Dorys C. González University of Burgos, Burgos, Spain

- Fatigue in fiber-reinforced concrete (FRC) is an active field of research at present.
- One major issue when studying high-cycle fatigue with constant stress levels is the wide dispersion of results:

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE


UNIVERSIDAD DE BURGOS **Å**usinco

1. INTRODUCTION

- This work is focus on flexural fatigue in fiber reinforced concrete.
- In particular, the <u>fatigue creep curves</u>, which represent the maximum CMOD (crack mouth opening rate) at each cycle vs the number of cycles, are analyzed with two goals:
 - 1. Explore the fatigue damage mechanisms in FRC.
 - 2. Look for damage parameters that have a good correlation with fatigue life. This way, it would be possible to adjust expressions to predict fatigue life, therefore reducing the scatter of the results in equal specimens.

2. EXPERIMENTAL PROGRAM

Materials and specimens

• 3 series of SFRC with different fiber contents.

Åusinco

- Fibers \rightarrow hooked-end, 30 mm long
- Concrete mixes:

NIVERSIDAD DE BURGOS

Matarial			
Material	A1	A2	A3
Cement	400.0		
Coarse aggregate	538.2		
Fine aggregate	847.1		
Filler	448.8		
Water	160.0		
Superplasticizer	16.0		
Nanosilica	20.0		
Steel fibers	23.6	47.1	78.5
w/c ratio	0.4		
Fibers (% vol. conc.)	0.3%	0.6%	1.0%

- Prismatic specimens of 75x75x300 mm with a notch of 12.5 mm (h/6).
- 16 specimens per series.
- Curing \rightarrow 1 year in climatic chamber at 20°C and 95% humidity.

2. EXPERIMENTAL PROGRAM

Concrete characterization

NIVERSIDAD E BURGOS

- Slump flow in fresh concrete \rightarrow between 770 mm (series A1) and 650 mm (series A3)
- Tests prior to fatigue campaign:

Åusinco

- $\circ~$ Compressive strength \rightarrow 106.7 ± 2.2 MPa
- $\circ~$ Modulus of elasticity \rightarrow 45.4 ± 0.9 GPa
- 3-point bending tests:

Series	f _{LOP} (MPa)	σ _{ult} (MPa)
A1	7.36	8.78
A2	8.35	11.78
A3	10.45	19.65

 $\sigma_{ult} > f_{LOP}$ (strain-hardening behavior)

2. EXPERIMENTAL PROGRAM

Flexural fatigue tests

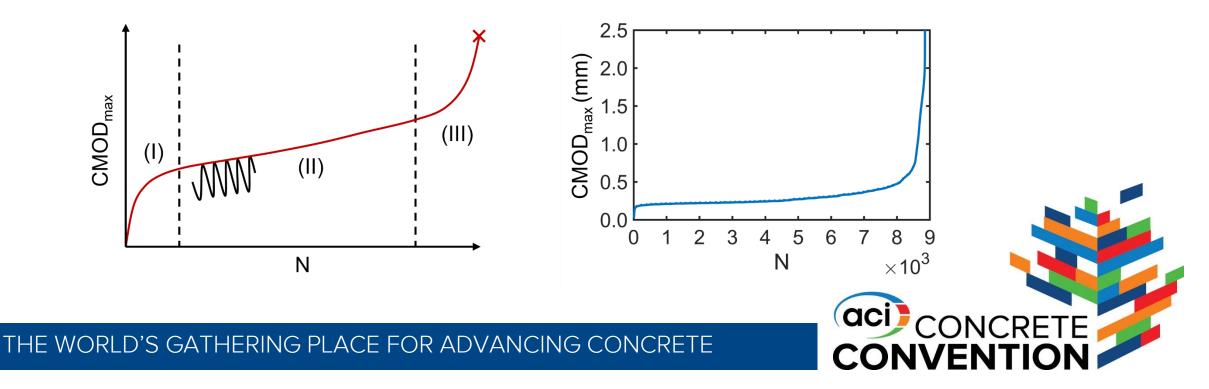
Åusinco

UNIVERSIDAD DE BURGOS

- High-cycle fatigue at constant stress levels.
- 12 tests per series.
- The stress levels were between 16% and 80% of the average σ_{ult} of each series:

σ _{max} (MPa)	σ _{min} (MPa)	
7.02	1.40	
9.42	1.88	
15.72	3.14	
	(MPa) 7.02 9.42	

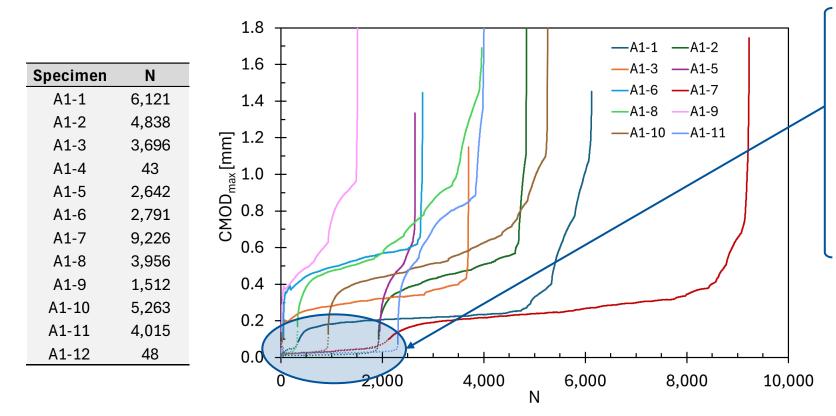
- Parameters measured \rightarrow load, CMOD, relative displacement and N



Fatigue creep curves

BURGOS

Åusinco

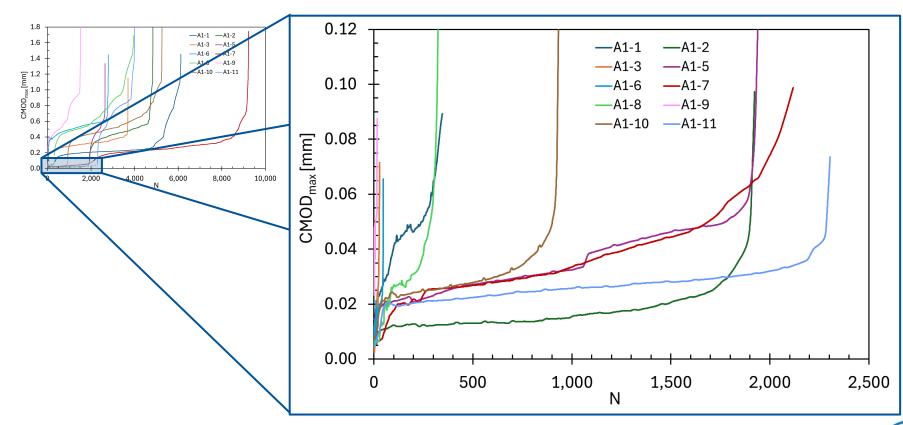

- Fatigue creep curves (or cyclic creep curves) represent the maximum CMOD at each cycle versus the number of cycles.
- They provide information on the evolution of fatigue damage in the elements.
- Example of fatigue creep curve in fiber-reinforced concrete subjected to bending fatigue:

Fatigue creep curves

• Fatigue creep curves in series A1 (0.3% fibers):

- In all the specimens there is an initial section with a different fatigue behavior from the rest of the curve.
- It is concluded that two different fatigue mechanisms are involved in the A1 series specimens.

CONCRETE


acı

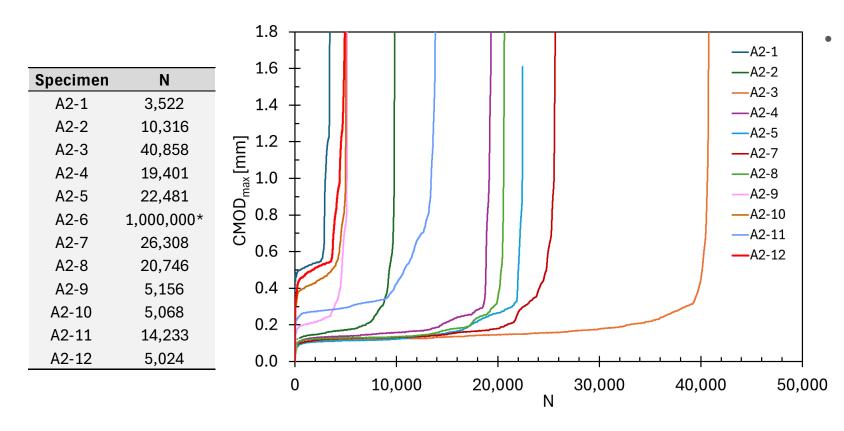
CONVENT

Fatigue creep curves

• Fatigue creep curves in series A1 (0.3% fibers):

- In the detail view, it is observed that this fatigue section also has the characteristic inverted S-shape.
- However, this mechanism is exhausted in all specimens for low CMODs, less than 0.05 mm.

CONCRETE


CONVENTIO

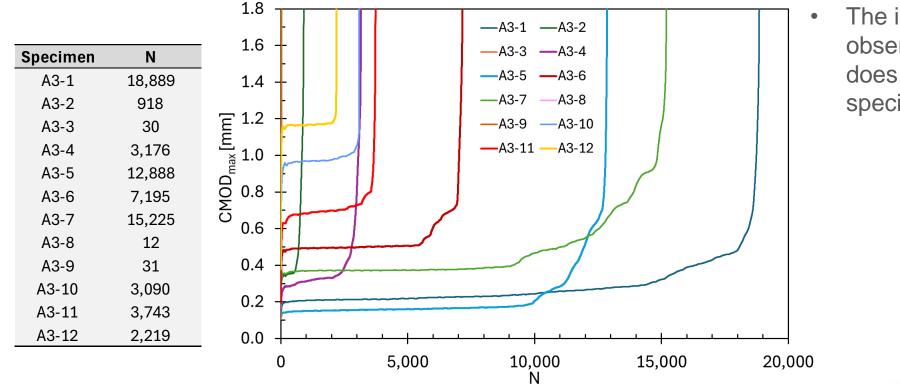
aci

Fatigue creep curves

• Fatigue creep curves in series A2 (0.6% fibers):

In some specimens of the A2 series, the initial fatigue mechanism observed in the A1 series also appears, but its extent in very reduced (≈ 50 cycles).

CONCRETE


acı

CONVENT

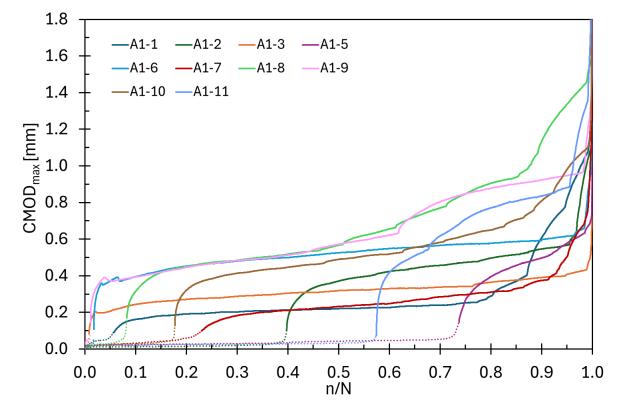
Fatigue creep curves

• Fatigue creep curves in series A3 (1% fibers):

The initial fatigue mechanism observed in the other series does not appear in the A3 series specimens.

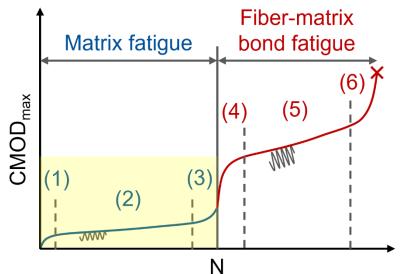
CONCRETE

aci


CONVENT

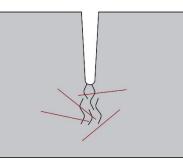
General fatigue creep curve in FRC subjected to bending fatigue

UNIVERSIDAD DE BURGOS **Å**usinco


• The specimens of A1 series show the most general case of cyclic creep curves in fiberreinforced concrete subjected to flexural fatigue:

General fatigue creep curve in FRC subjected to bending fatigue

• In the general case of fatigue creep curves, two sections can be distinguished, each governed by a different fatigue mechanism:



Åusinco

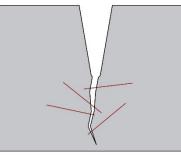
NIVERSIDAD DE BURGOS

Section 1: Matrix fatigue

- Scattered microcracks in the environment of the notch.
- Fatigue loads are resisted by the concrete matrix.
- Due to the low level of deformations (CMOD<0.05 mm), the fibers are hardly involved.

General fatigue creep curve in FRC subjected to bending fatigue

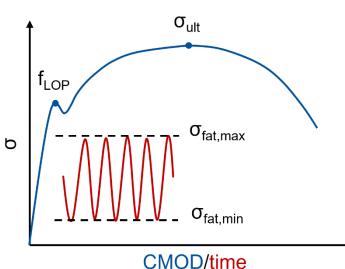
• In the general case of fatigue creep curves, two sections can be distinguished, each governed by a different fatigue mechanism:



Åusinco

UNIVERSIDAD DE BURGOS

• Section 2: Fiber-matrix bond fatigue


- This section begins when the microcracks converge to form a main macrocrack that breaks the matrix.
- At this point, fatigue loads begin to be resisted by the bridging forces between the fibers and the matrix.
- This mechanism is much more ductile than the previous one (higher CMOD).

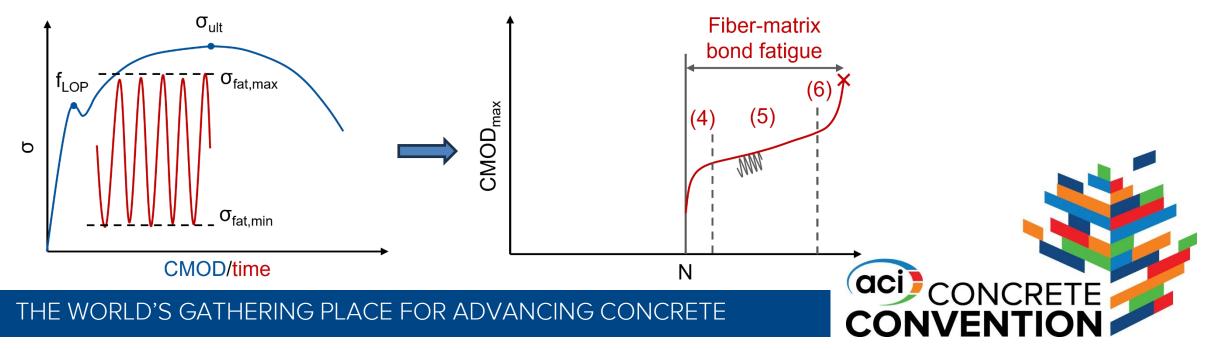
General fatigue creep curve in FRC subjected to bending fatigue

• This general curve is observed when the following two conditions are fulfilled:

NIVERSIDAD E BURGOS **Å**usinco

- 1. Maximum fatigue stress is lower than first-crack strength $(\sigma_{fat,max} < f_{LOP})$.
 - First-crack strength is approximately the stress at the limit of proportionality (LOP) in the three-point bending test according to EN 14651.

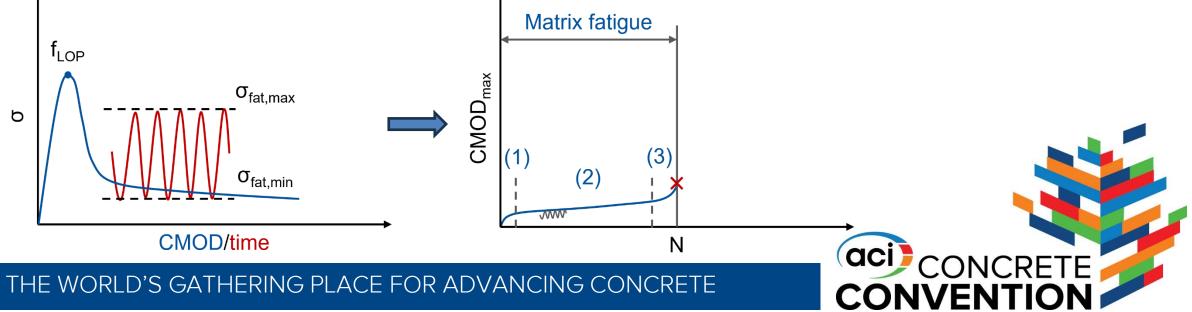
2. Strain-hardening flexural behavior is produced ($f_{LOP} < \sigma_{ult}$).


 Once the concrete matrix is cracked, the residual stress that fibers can withstand is greater than matrix strength. In other words, the ultimate flexural strength is higher than first-crack strength.

General fatigue creep curve in FRC subjected to bending fatigue

NIVERSIDAD E BURGOS **Å**usinco

- If both conditions are not fulfilled, then only one section of the general curve will be observed. There are two particular cases:
 - a. Strain-hardening occurs, but maximum fatigue stress is higher than first-crack strength ($\sigma_{fat,max} > f_{LOP}$).
 - The concrete matrix breaks after the first cycle and only fiber-matrix bond fatigue is observed.


General fatigue creep curve in FRC subjected to bending fatigue

NIVERSIDAD

BURGOS

Åusinco

- If both conditions are not fulfilled, then only one section of the general curve will be observed. There are two particular cases:
 - b. Maximum fatigue stress is lower than first-crack strength, but there is no strain-hardening ($f_{LOP} = \sigma_{ult}$).
 - When the concrete matrix breaks after a certain number of cycles, fibers cannot withstand stress and the specimen fails.

Fatigue life

NIVERSIDAD E BURGOS

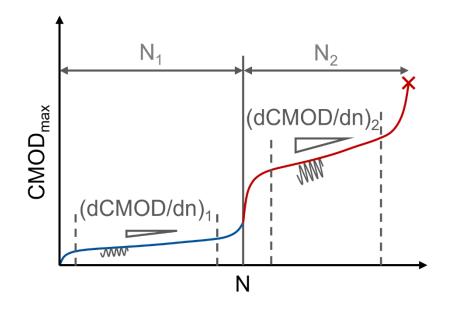
- According to fatigue creep curves, fatigue life can be divided in two parts:
 - $\circ \ \ N_1 \rightarrow \text{matrix fatigue}$

Åusinco

 $\circ~\mathbf{N_2} \rightarrow$ fiber-matrix bond fatigue

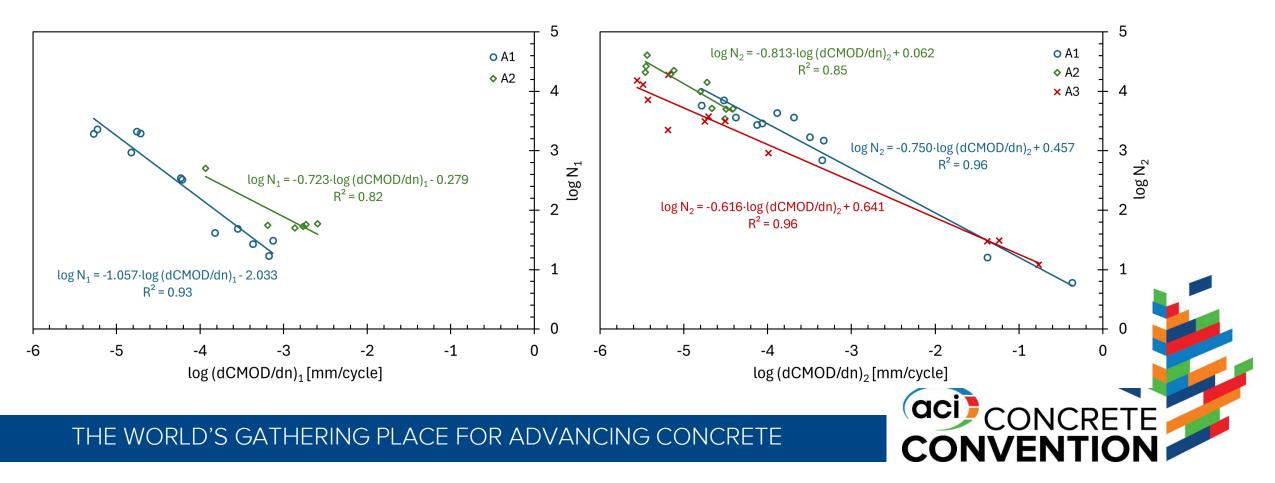
Test No.	A1		A	A2		A3	
Test No.	N ₁	N ₂	N ₁	N ₂	N ₁	N ₂	
1	346	5,775	59	3,463	0	18,889	
2	1,924	2,914	504	9,812	0	918	
3	31	3,665	50	40,808	0	30	
4	27	16	57	19,344	0	3,176	
5	1,948	694	53	22,428	0	12,888	
6	49	2,742	1,000,000*	0	0	7,195	
7	2,118	7,108	56	26,252	0	15,225	
8	327	3,629	0	20,746	0	12	
9	17	1,495	0	5,156	0	31	
10	934	4,329	0	5,068	0	3,090	
11	2,305	1,710	0	14,233	0	3,743	
12	42	6	0	5,024	0	2,219	

In series A2 and A3, since the maximum fatigue stress is higher than first-crack strength, matrix fatigue is not expected to occur ($N_1 \approx 0$).


Series	$\sigma_{fat,max}$ / f_{LOP}
A1	95 %
A2	113%
A3	150 %

Relationship between CMOD rate and fatigue life

- The CMOD rate (dCMOD/dn) is the slope of the central stage in fatigue creep curves.
- It represents the speed at which fatigue damage is being infringed to the specimen.

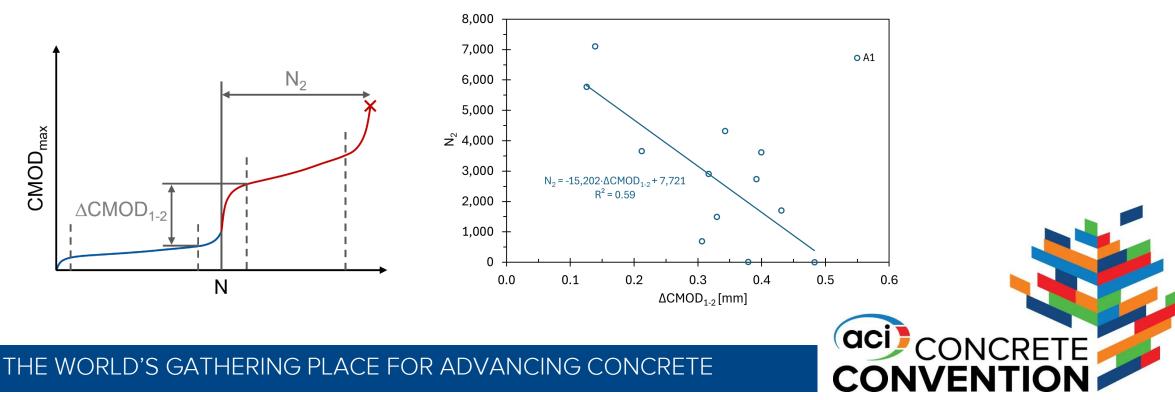


Relationship between CMOD rate and fatigue life

• The results show that there is a strong correlation between CMOD rate and fatigue life. Higher dCMOD/dn lead to lower N, and vice versa.

Relationship between CMOD rate and fatigue life

- This relationship is verified independently for both fatigue mechanisms:
 - The CMOD rate of the first section $(dCMOD/dn)_1$ is correlated with the number of cycles of the matrix fatigue (N_1) .
 - The CMOD rate of the second section $(dCMOD/dn)_2$ is correlated with the number of cycles of the fiber-matrix bond fatigue (N_2) .
- This has several implications:
 - \circ (dCMOD/dn)₁ can be used to predict fatigue life until cracking.
 - \circ (dCMOD/dn)₂ can be used to predict fatigue life from matrix cracking to the total failure.
 - Apparently, both fatigue mechanisms are independent.


CMOD increase between fatigue sections (\triangle CMOD₁₋₂)

- In the specimens of series A1, where both fatigue mechanisms occur, it has been found a good correlation between:
 - \circ CMOD increase between fatigue sections (\triangle CMOD₁₋₂).

Åusinco

JNIVERSIDAD DE BURGOS

 \circ Number of cycles of the fiber-matrix bond fatigue (N₂).

CMOD increase between fatigue sections (\triangle CMOD₁₋₂)

- Higher CMOD "jumps" between fatigue sections lead to lower number of cycles that fibers can then withstand.
- This is explained by the following:
 - Once the concrete matrix is cracked and fibers start to act, there is a certain value of CMOD at which fiber-matrix bond fatigue is stabilized.
 - \circ This value varies between specimens because it depends on fiber distribution.
 - It is assumed that, the higher this value of CMOD stabilization, the lower the resistant cross-section and then the lower the fatigue life.

4. CONCLUSIONS

- The flexural fatigue behavior of FRC in the most general case consist of two fatigue mechanisms: matrix fatigue and fiber-matrix bond fatigue.
- According to this, the general fatigue creep curve in FRC under bending fatigue is analyzed, stablishing the conditions to observe it and the particular cases that can appear.
- It is found a strong correlation between CMOD rate and fatigue life. This relationship is verified independently for both fatigue mechanisms.
- Other parameters of the fatigue creep curves, such as CMOD increase between fatigue sections, also show a good correlation with fatigue life in particular cases.

Damage mechanisms in fiber-reinforced concrete subjected to flexural fatigue through the analysis of cyclic creep curves

A. Mena-Alonso, M.A. Vicente, J. Mínguez and Dorys C. González University of Burgos, Burgos, Spain

