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CO, in Concrete

* Concrete contributes 6-8% global CO, emissions

All figures in kg CO2/kg of building material
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Cement CO, Emissions

Limestone Homogenization Clinker
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Cement Industry Federation; Rahman et al. Energies 2017

Most conventional way to reduce concrete emissions is
to reduce cement content in concrete
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Supplementary Cementitious Materials (SCMs)

* SCMs, finely ground amorphous calcium

aluminosilicates, critical to reduce CO, emissions Calcined clays

* SCMs provide significant benefits to concrete

— Improve sustainability, fresh properties, later-age

strength, and durability

* Fly ash, slag, and silica fume most commonly Used mass and bottom ashes

— Often industrial byproducts
— Increasing shortfalls being reported locally
— How to identify novel SCMs?

PCA Design and Control of Concrete Mixtures; Snellings RILEM TL 2016;

Juenger et al. CCR 2019; Scrivener et al. CCR 2018; Snellings et al. CCR 2023
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Novel SCMs must be identified, characterized, and
used for continued concrete CO, reductions

Calcined clays, natural pozzolans, reclaimed fly ashes

Manufactured SCMs: Thermal activation,
mechanochemical activation, CO, mineralization
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Mechanochemical Activation of Fillers

Fillers can be activated by high-energy grinding (planetary
ball mill)

Our work has focused on basaltic fines, mine tailings, clays
Others are doing this at scale: Carbon Upcycling, Polysius
Generally the focus has been on clays

Possibility of combining with CO, exposure for high Ca/Mg
fillers

Focusing on basaltic fines in this talk

Tole et al. MP 2019
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BET SSA
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BET SSA increases from 1.8 m?/g between 5.3
and 12.4 m?/g

BET SSA decreases or levels off after 15 min
grinding
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Agglomeration causes reduced BET SSA

BET SSA reduces as ball-to-powder ratio (BPR)
increases

S. Amroun, M. Tahlaiti, P. Suraneni,
Mechanochemical activation of basaltic fines for
enhanced reactivity, PrePrint (2024)
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SEM

BF shows angular particles, around
10 um in size, consistent with PSD

After MCA, particle distribution
broader

— Fines, normal, and coarse

— Consistent with PSD

— 10um BioNIUM 5/22/2024

2.00kV LED SEM WD 9.9mm 11:03:54

Aggregates clearly seen

Morphology changes towards
spherical particles

% ’ < 1 4
= —_— 10um BioNIUM 5/15/2024

5.0kV LED SEM WD 9.4mm 12:12:31



BF is very crystalline

After MCA, clear amorphization
But amorphization phase dependent

Ease of amorphization follows hardness: chlorite, MH =
2 > kaersutite, MH =5 > albite, MH =6 > quartz, MH =7

DOA is just an estimate

]

XRD
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XRD

* Amorphization increases with grinding time and
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* Reactivity increases with grinding time and BPR

* We get materials well beyond the inert
threshold especially at high BPR/grinding time

Modified R3 Test

* The increase in reactivity with grinding time

decreases with an increase in BPR
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Strong linear relationship between estimated

DOA and reactivity

Amorphization Drives Reactivity

No relationship with SSA and related

parameters

Over a wide range, amorphous content

controls reactivity

Do you get same results if you ball mill for long

durations?

]
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What About Other Materials?

Many other materials tested
Results shown for 12 materials

MCA generally works, but does not always

make sense

Reactivity increase shows strong negative

correlation with initial heat release

Highly amorphous materials -> High initial

heat release -> Limited further amorphization

-> Limited increase in heat release
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Cement Pastes

* At 30% replacement, pastes with MCA
SCMs show increased heat release 300 A

* Shown for basaltic fines and a low
kaolinitic clay

——PLC
LC-CP

—— LC-60-CP
BF-CP

07 —— BF-60-CP

50

Cumulative heat release (J/g SCM)

. 1 L I ~ I & I E I J | s I > I
0 20 40 60 80 100 120 140 160
Time (hours)

LAB

l J Slide 14 AQCE@%



100

Cement Mortars | o
* Improved/similar flow despite high SSA due to spherical § 60 .
particles o o
* Strength significantly improved over raw SCMs at 7 days and  °
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Conclusions

Mechanochemical activation studied in lab for basaltic fines
and other materials

SSA increases, complex particle size distribution,
agglomeration, and spherical particles

Amorphization, with extent depending on phase hardness
Reactivity increases with BPR and grinding time
Amorphization drives reactivity, strong linear effect

MCA shown for many materials, increase in reactivity
depends on initial reactivity

Improved heat release, mortar flow, strength, bulk resistivity
seen in cement pastes and mortars <
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