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Mechanics-Manufacturing-Design Synergy
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Advanced Manufacturing can Enable New Designs of Architected Material 
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Nature Provides Numerous Examples of Purposeful Designs with Unique Mechanisms

Unidirectional high 
tensile 

strength/stiffness.

Multi-directional 
increase in 

strength/toughness

Property mismatch 
& Arrest crack 

growth

Increase toughness 
of otherwise brittle 

systems 

Increase in             
damage and impact-

resistance 

Buckling/bending  
resistance & High 
strength-to-weight

Control over 
intrinsic strength & 

flexibility

Flexible armor 
of sliding plates

Beetle 

exoskeleton

Dermal Armor

Abalone shell Bird  bone

Armadillo

Chiton

Spider 

silk

Biological Design 

Motifs 

(Architecture)

Cortical bone/Horse hoof  

[1] Adapted from: S. Naleway & M. Meyers, Adv. Mater., 2015 

Design Motifs and 

Toughening Mechanisms 

in Biological Materials:
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4[2] Mechanics of Materials 140 (2020) 103243

Silica cylinders Soft protein

Arrested 

cracks

[1] PNAS 112 (2015) 4976–4981

[1] 

[2] 

Deep sea sponge’s layered soft-hard architecture makes it a tough material
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Architected materials exhibit properties not found in monolithic materials
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Improving Toughness by Design
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multi-material

Hard-Hard 

multi-material

Hard

Hard

Hard
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Hard

Hard
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Hypothesis: engineered multi-material systems display improved mechanical performance
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Silica 

cylinders

Soft 

protein

Arrested 

cracks

Layered Hard (mortar)-Soft (silicone) Multi-Material 
Architectures Enabled by Additive Manufacturing

How can toughness be improved based on design?

[2] Mechanics of Materials 140 (2020) 103243

[1] PNAS 112 (2015) 4976–4981

[1] 

[2] 
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Advanced 
Manufacturing can 
Enable Architected 
Materials Across 
Scale and Help 
Study them

T0
T1

T2

T3

• T0 – PLA filament extruder

• T1 – Alternative filament extruder

• T2 – Cement paste extruder (Hyrel)

• T3 – Silicon extruder (Hyrel)

Single-material extrusion

Multi-material extrusion
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Silicone layer extrusion Mortar layer extrusion

Multi-material extrusion for layered 

mortar-silicone multi-material composite 

Additive manufacturing of hard(mortar)-soft(silicone) multi-material system
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Monolithic Hard Materials (Mortar) Layered hard-soft (Mortar/Silicone)

Single-edge Notched Bend (SENB) test

𝑃

𝑆

𝑊

𝐵

𝑎0

Crack 

Extension

𝑃

𝑆

𝐵

𝑎0

𝑊
Crack 

Extension

Single-edge Notched Bend (SENB) test

Fracture toughness was investigated experimentally for monolithic and layered systems
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Definition

𝐽 = න
𝛤

(𝑊𝑑𝑦 − 𝑇
𝜕𝒖

𝜕𝑥
𝑑𝑠)

𝛤: Curve surrounding the notch tip

𝑊: Strain-energy density

𝑻: Traction vector defined according to outward normal along 𝛤
𝒖: Displacement vector

[1] Rice. J., (1968). Journal of Applied Mechanics, 379-386.

The J-integral is an integral equation that gives the amount of energy released in 

advancing a crack surface by a unit area.

[1]

J-integral was used to quantify toughness (i.e., material resistance to crack extension) 

Flat surfaced notched in two-

dimensional deformation field 

(all stresses depend only on 𝑥 

and 𝑦). 𝛤 is any curve 

surrounding the notch tip; 𝛤𝑡 

denotes the curved notch tip [1]
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𝐾𝐼𝐶 =
𝑃𝑆

𝐵𝑊
3
2

𝑓(𝑎0/𝑊)

❖ J-integral is given by:

and 𝐴𝑝𝑙𝑖
 is the post-peak area under the notched load-displacement curve

𝐽𝑖𝑛𝑖𝑡 =
𝐾𝐼𝑐

2 1 − 𝑣2

𝐸
 ,  𝐽𝑝𝑙𝑖

= 𝐽𝑝𝑙𝑖−1
+

𝜂𝑖

𝑊 − 𝑎𝑖

𝐴𝑝𝑙𝑖
− 𝐴𝑝𝑙𝑖−1

𝐵

𝑎i =
𝐶𝑖

𝐶0
𝑎0

𝑉
𝑎0
𝑊

𝑉
𝑎𝑖
𝑊

❖ Crack Extension,

where, 𝐶𝑛 is the instantaneous compliance of sample

J
-i
n
te

g
ra

l

Crack Extension, a

Resistance (R) Curve

𝑃

𝑆

𝑊

𝐵

𝑎0

Notched 3-point bend test (ASTM E1820)

𝐽 = 𝐽𝑖𝑛𝑖𝑡 + 𝐽𝑝𝑟𝑜𝑝

For plane-strain notched bend test

initiation propagation

𝑉 𝑥 = 0.8 − 1.7 𝑥 + 2.4𝑥2 +
0.66

1 − 𝑥2

where 𝑓 𝑥 =
3 𝑥

1
2 1.99 − 𝑥 1 − 𝑥 2.15 − 3.93𝑥 + 2.7𝑥2

2 1 + 2𝑥 1 − 𝑥
3
2

0

10

20

30

40

50

0 0.1 0.2 0.3

Lo
ad

 (
N

)

CMOD (mm)

𝐶_𝑖𝐶_𝑖𝐶_𝑖

0

10

20

30

40

50

0 0.1 0.2 0.3

Lo
ad

 (
N

)

CMOD (mm)

𝐴𝑝𝑙

[1] ASTM E1820-24 - Standard Test Method for Measurement of Fracture Toughness

[1] 

[2] 

[2] Banthia and Sheng (1995) Two Parameter Fracture Model for Concrete

Compliance based method to calculate J-integral 
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Layered multi-material shows pronounced toughening compared to monolithic and cast
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Enhanced ductility was achieved for layered multi-material compared to monolithic and cast

* Symbols indicate significance with t-test thresholds of 0.05
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Cast 3DP Mortar 3DP Mortar-Silicone 

𝑒1 

strain
𝑒1 

strain

𝑒1 

strain

𝑒1 

strain
𝑒1 

strain

𝑒1 

strain

Vastly varying crack propagation mechanism responsible for toughening observed 
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How do we numerically investigate fracture in hard-
soft multi-material assemblies?
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Updated crack surface energy

න
𝛺0

𝐺𝑐 
𝑏𝛾 𝑑, ∇𝑑 d𝑉 + න

𝛤0

𝐺𝑖dA

InterfaceBulk

𝐺𝑐
𝑏: fracture energy of the bulk material

𝐺𝑖: fracture energy dissipated at the interface

Updated total potential energy of the system

Π(𝐮, 𝑑) = ඳ

𝛺0

𝑔 𝑑 𝜓0 𝐅 𝑑𝑉 + න
𝛺0

𝐺𝑐 
𝑏𝛾 𝑑, ∇𝑑 d𝑉 + න

𝛤0

Δ𝐮 T𝐓 dA − 

𝛺0

𝒃𝟎 ⋅ 𝐮d𝑉 + න
Γ0

𝐭𝟎 ⋅ 𝐮d𝐴

total potential

crack surface energy
external energy

Body forces Applied tractionStrain energy density

strain energy

Displacement 

field

Phase-

field
CZM

InterfaceBulk

න
𝛤0

𝐺𝑖dA

= න
𝛤0

Δ𝐮 T𝐓dA

Phase field 
d

ℬ 

𝒖 = ഥ𝒖 𝜕Ω𝑢on

𝜕Ω𝑡on

Ω0
1: Bulk-A

Γ0(PPR CZM)

Ω0
2: 

Bulk-B

𝛤0: Interface – modeled by PPR CZM

ℬ: smeared crack – modeled by Phase-field

𝒕𝟎

Δ𝐮 = 𝐮𝟏 − 𝐮𝟐 displacement jump vector

𝒎

Coupled phase-field CZM model developed to numerically investigate crack prop in MMs
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𝜙 Δ𝐮𝑛, Δ𝐮𝑡 = min 𝐺𝑐
𝑖𝑛𝑡

𝑛
, 𝐺𝑐

𝑖𝑛𝑡
𝑡

+ Γ𝑛 1 −
Δ𝐮𝑛

𝛿𝑛

𝛼
𝑚

𝛼
+

Δ𝐮𝑛

𝛿𝑛

𝑚

+ 𝐺𝑐
𝑖𝑛𝑡

𝑛
− 𝐺𝑐

𝑖𝑛𝑡
𝑡

x Γ𝑡 1 −
|Δ𝐮𝑡|

𝛿𝑡

𝛽
𝑛

𝛽
+

|Δ𝐮𝑡|

𝛿𝑡

𝑛

+ 𝐺𝑐
𝑖𝑛𝑡

𝑡
− 𝐺𝑐

𝑖𝑛𝑡
𝑛

𝐺𝑐
𝑖𝑛𝑡

𝑛
, 𝐺𝑐

𝑖𝑛𝑡
𝑡
: Energies for mode I and mode II fracture, respectively

Γ𝑛 , Γ𝑡:  Energy constants 
Δ𝐮𝑛, Δ𝐮𝑡: Normal and tangential components of the displacement jump
𝛿𝑛, 𝛿𝑡:  Final crack openings representing complete failure in the normal and tangential directions, respectively
𝛼, 𝛽: shape parameters

𝑇𝑛 Δ𝐮𝑛, Δ𝐮𝑡 =
Γ𝑛

𝛿𝑛
𝑚 1 −

Δ𝐮𝑛

𝛿𝑛

𝛼
𝑚

𝛼
+

Δ𝐮n

𝛿𝑛

𝑚−1

− 𝛼 1 −
Δ𝐮𝑛

𝛿𝑛

𝛼−1
𝑚

𝛼
+

Δ𝐮𝑛

𝛿𝑛

𝑚

x

Γ𝑡 1 −
|Δ𝐮𝑡|

𝛿𝑡

𝛽
𝑛

𝛽
+

|Δ𝐮𝑡|

𝛿𝑡

𝑛

+ 𝐺𝑐
𝑖𝑛𝑡

𝑡
− 𝐺𝑐

𝑖𝑛𝑡
𝑛

𝑇𝑡 Δ𝐮𝑛, Δ𝐮𝑡  =
Γ𝑡

𝛿𝑡
𝑛 1 −

|Δ𝐮𝑡|

𝛿𝑡

𝛽
𝑛

𝛽
+

|Δ𝐮𝑡|

𝛿𝑡

𝑛−1

− 𝛽 1 −
|Δ𝐮𝑡|

𝛿𝑡

𝛽−1
𝑛

𝛽
+

|Δ𝐮𝑡|

𝛿𝑡

𝑛

x Γ𝑛 1 −
Δ𝐮𝑛

𝛿𝑛

𝛼
𝑚

𝛼
+

Δ𝐮𝑛

𝛿𝑛

𝑚

+ 𝐺𝑐
𝑖𝑛𝑡

𝑡
− 𝐺𝑐

𝑖𝑛𝑡
𝑛

Δ𝐮𝑡

Δ𝐮𝑡
 

න
𝛤0

𝐺𝑖dA = න
𝛤0

Δ𝐮  T 𝐓 dA

Updated crack surface energy

where 𝐓 = (𝑇𝑛, 𝑇𝑡)andΔ𝐮 = 𝐮𝟏 − 𝐮𝟐

• Normal traction force

• Tangential traction force

Displacement jump Traction force vector

[1] K. Park et al. / J. Mech. Phys. Solids 57 (2009) 891–90

User-

Element 

Subroutine 

(UEL) for 

Abaqus

𝑇𝑛 δ𝑛𝑐 , 0 = 𝜎𝑚𝑎𝑥

𝑇𝑡 0, δ𝑡𝑐 = 𝜏𝑚𝑎𝑥

Park-Paulino-Roesler (PPR) [1] used to capture dissipated energy at interfacial zones 
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Interfaces:
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cohesive elements
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Material properties were determined using specific mechanical characterization tests
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Crack propagation mechanism in tri-layer hard-soft-hard composite
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• Concrete can be re-imagined as a composite 

material

• Engineering new constitutive properties in 

concrete materials is possible using advanced 

manufacturing 

• Substantial improvement in toughness 

achieved for layered hard(mortar)-

soft(silicone) multi-material systems compared 

to their monolithic and cast counterparts

• Numerical investigation of fracture can help 

further explain toughening mechanisms 

observed in such multi-material systems
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Conclusions and outlook
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Thank you for your attention! Questions?
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