Tough Cementitious Mortar-Silicone Multi-Material Composite Enabled by Automated Multi-Material Additive Manufacturing

Aimane Najmeddine, Ph.D. Associate Research Scholar

ARCHITECTED MATERIALS AND ADDITIVE MANUFACTURING LAB

Mechanics-Manufacturing-Design Synergy

Advanced Manufacturing can Enable New Designs of Architected Material

Displacement

ARCHITECTED MATERIALS AND ADDITIVE MANUFACTURING LAB

Nature Provides Numerous Examples of Purposeful Designs with Unique Mechanisms

Improving Toughness by Design

Hypothesis: engineered multi-material systems display improved mechanical performance

How can toughness be improved based on design?

Layered Hard (mortar)-Soft (silicone) Multi-Material Architectures Enabled by Additive Manufacturing

ARCHITECTED MATERIALS AND ADDITIVE MANUFACTURING LAB

[1] PNAS 112 (2015) 4976–4981

[2] Mechanics of Materials 140 (2020) 103243

Advanced Manufacturing can Enable Architected Materials Across Scale and Help Study them

Single-material extrusion

- **T0** PLA filament extruder
- T1 Alternative filament extruder
- T2 Cement paste extruder (Hyrel)
- T3 Silicon extruder (Hyrel)

Multi-material extrusion

Additive manufacturing of hard(mortar)-soft(silicone) multi-material system

Multi-material extrusion for layered mortar-silicone multi-material composite

Silicone layer extrusion

Mortar layer extrusion

Fracture toughness was investigated experimentally for monolithic and layered systems

J-integral was used to quantify toughness (i.e., material resistance to crack extension)

The J-integral is an integral equation that gives the amount of energy released in advancing a crack surface by a unit area.

$$J = \int_{\Gamma} (Wdy - T\frac{\partial \boldsymbol{u}}{\partial x}ds)$$

- Γ : Curve surrounding the notch tip
- W: Strain-energy density
- **T**: Traction vector defined according to outward normal along Γ
- **u:** Displacement vector

ARCHITECTED MATER

ADDITIVE MANUFACTURING LAB

Flat surfaced notched in twodimensional deformation field (all stresses depend only on xand y). Γ is any curve surrounding the notch tip; Γ_t denotes the curved notch tip [1]

Compliance based method to calculate J-integral

✤ J-integral is given by:

$$J = J_{init} + J_{prop}$$

initiation propagation

For plane-strain notched bend test

$$J_{init} = \frac{K_{lc}^2(1-v^2)}{E} , \quad J_{pl_i} = \left[J_{pl_{i-1}} + \left(\frac{\eta_i}{W-a_i}\right) \left(\frac{A_{pl_i} - A_{pl_{i-1}}}{B}\right) \right]$$
[1]

$$K_{IC} = \left(\frac{PS}{BW^{\frac{3}{2}}}\right) f(a_0/W) \quad \text{where} \quad f(x) = \frac{3(x)^{\frac{1}{2}} [1.99 - x(1-x)(2.15 - 3.93x + 2.7x^2)]}{2(1+2x)(1-x)^{\frac{3}{2}}}$$

and A_{pl_i} is the post-peak area under the notched load-displacement curve

• Crack Extension,
$$a_i = \frac{C_i}{C_0} a_0 \frac{V(\frac{a_0}{W})}{V(\frac{a_i}{W})}$$
 $V(x) = 0.8 - 1.7(x) + 2.4x^2 + \frac{0.66}{1 - x^2}$ [2]

where, C_n is the instantaneous compliance of sample

ARCHITECTED MATERIALS AND ADDITIVE MANUFACTURING LAB

[1] ASTM E1820-24 - Standard Test Method for Measurement of Fracture Toughness [2] Banthia and Sheng (1995) Two Parameter Fracture Model for Concrete

Layered multi-material shows pronounced toughening compared to monolithic and cast

ARCHITECTED MATERIALS AND ADDITIVE MANUFACTURING LAB

Layered multi-material shows pronounced toughening compared to monolithic and cast

*

ARCHITECTED MATERIALS AND

ADDITIVE MANUFACTURING LAB

Enhanced ductility was achieved for layered multi-material compared to monolithic and cast

ARCHITECTED MATERIALS AND

ADDITIVE MANUFACTURING LAB

*

Vastly varying crack propagation mechanism responsible for toughening observed

Step-wise cracking responsible for significant sequential energy dissipation across layers

How do we numerically investigate fracture in hardsoft multi-material assemblies?

Coupled phase-field CZM model developed to numerically investigate crack prop in MMs

Park-Paulino-Roesler (PPR) [1] used to capture dissipated energy at interfacial zones

User-Element Subroutine (UEL) for Abaqus • Normal traction force

$$T_n(\Delta \mathbf{u}_n, \Delta \mathbf{u}_t) = \frac{\Gamma_n}{\delta_n} \left[m \left(1 - \frac{\Delta \mathbf{u}_n}{\delta_n} \right)^{\alpha} \left(\frac{m}{\alpha} + \frac{\Delta \mathbf{u}_n}{\delta_n} \right)^{m-1} - \alpha \left(1 - \frac{\Delta \mathbf{u}_n}{\delta_n} \right)^{\alpha-1} \left(\frac{m}{\alpha} + \frac{\Delta \mathbf{u}_n}{\delta_n} \right)^m \right] \mathbf{x}$$

$$(\mathbf{u}_n, \mathbf{u}_n, \mathbf{u}_n) = \sigma_{max} \left[\Gamma_t \left(1 - \frac{|\Delta \mathbf{u}_t|}{\delta_t} \right)^{\beta} \left(\frac{n}{\beta} + \frac{|\Delta \mathbf{u}_t|}{\delta_t} \right)^n + \langle G_c^{int} - G_c^{int} \rangle \right]$$

Tangential traction force

proce

$$T_{t}(\Delta \mathbf{u}_{n}, \Delta \mathbf{u}_{t}) = \frac{\Gamma_{t}}{\delta_{t}} \left[n \left(1 - \frac{|\Delta \mathbf{u}_{t}|}{\delta_{t}} \right)^{\beta} \left(\frac{n}{\beta} + \frac{|\Delta \mathbf{u}_{t}|}{\delta_{t}} \right)^{n-1} - \beta \left(1 - \frac{|\Delta \mathbf{u}_{t}|}{\delta_{t}} \right)^{\beta-1} \left(\frac{n}{\beta} + \frac{|\Delta \mathbf{u}_{t}|}{\delta_{t}} \right)^{\beta-1} \left(\frac{n}{\beta} + \frac{|\Delta \mathbf{u}_{t}|}{\delta_{t}} \right)^{\alpha} \left(\frac{n}{\beta} + \frac{\Delta \mathbf{u}_{n}}{\delta_{n}} \right)^{\alpha} + \left\langle G_{c}^{int}{}_{t} - G_{c}^{int}{}_{n} \right\rangle \right] \left(\frac{\Delta \mathbf{u}_{t}}{|\Delta \mathbf{u}_{t}|} \right)$$

Updated crack surface energy

$$\int_{\Gamma_0} G^i dA = \int_{\Gamma_0} (\Delta \mathbf{u})^T \left\{ \mathbf{T} \right\} dA \text{ where } \left\{ \Delta \mathbf{u} = \mathbf{u}_1 - \mathbf{u}_2 \right\} \text{ and } \left\{ \mathbf{T} = (T_n, T_t) \right\}$$

 α, β : shape parameters

 $T_n(\delta_{nc})$

Zero-thickness cohesive elements used for interface - 4-node quadrilateral plane strain elements used for bulk

ARCHITECTED MATERIALS AND ADDITIVE MANUFACTURING LAB

Material properties were determined using specific mechanical characterization tests

Crack propagation mechanism in tri-layer hard-soft-hard composite

ARCHITECTED MATERIALS AND ADDITIVE MANUFACTURING LAB

Effect of thickness on overall performance

Hardened cement-PVS composite show significant increase in toughness vs. monolithic

ARCHITECTED MATERIALS AND ADDITIVE MANUFACTURING LAB

Conclusions and outlook

- Concrete can be re-imagined as a composite material
- Engineering new constitutive properties in concrete materials is possible using advanced manufacturing
- Substantial improvement in toughness achieved for layered hard(mortar)soft(silicone) multi-material systems compared to their monolithic and cast counterparts
- Numerical investigation of fracture can help further explain toughening mechanisms observed in such multi-material systems

Thank you for your attention! Questions?

