Fatigue Evaluation of Light-Rail and Structural Precast Panels Fiber-Reinforced Concrete

Barzin Mobasher, Devansh Patel, Chidchanok Pleesudjai, School of Sustainable engineering and the Built Environment

Arizona State University

City of Phoenix South Central/NW Extension project

- 12,000 feet (3.6 km) of 8' (5.3 m) wide track slab, 0.4 m thick
- Volume 10,000 yd³ (7799 m³)

- Phoenix Metro Light Rail adding several stations and track lines.
- Construction costs and scheduling creates a significant pushback
- The track slabs are 14.5" (0.4 m) thick and 8' (2.5 m) wide RC sections
- Size and cost of the project, the location, time required for forming of rebars, and the total volume.
- Propose cost savings by switching continuous bars to fibers.
- Validate the deign by Full-scale fatigue tests
- Project in collaboration with: Kiewit McCarthy, a Joint Venture (NWE2), Mr. Gary Sanders, Project Manager

Х

Stray Current Corrosion a Potential Concern

Design Alternatives

Proposed Testing Plan

- Develop a Testing Plan for the Mockup design and testing
- Size for the mockups : 3x8 ft by 14.5" for reinforced concrete vs 3x8x 12" with FRC only
- Control sample: concrete and rebar cage to meet the reinforcement ratio of the full-size sections
- Two mockups made for each of the three-test series.
- Two standard control sections, and two mockups per modified configuration using steel fibers
- Two suppliers based on their design recommendations are selected.

- Buried pipes, rebars experience Stray current corrosion
- Grounding the rebar is costly

ra A. Fulton

ARIZONA STATE UNIVERSITY

chools of Engineering

Mock-ups representing RC vs. FRC Design

Construction of current Design Ira A Burroach consumes significant time ARIZONA STATE UNIVERSITY

Proposed design expedites the construction time and cost significantly.

Attachment of Strain Gages

Sample Preparation

Ira A. Fulton Schools of Engineering

Definition of Serviceability Criteria in terms of Fatigue

- Simulate the response under fatigue load, a loading history for a service life was considered:
- A service life of 45 years
- Significant ground settlement
 - Ex: water line failure the slab, loss of ground support, 8' long section for the entire width
- Design Wheel loading, fully loaded train with triple capacity is 9000 lbs.
- Factor of safety of 1.7-2.0, set the load at 18-24 kips.
- Train runs on schedule 24/7, every 6 minutes for the entire service life
- Preload the specimen to full cracking phase before the fatigue testing starts
- Results: 2.0 million cycles of loading. From zero load to full capacity of the fatigue loads.

Materials Testing

Material Characterization

SFRC2 (Simulated)

0.1

24 N , Load, kN

-18

<u>0</u> 0.15

ARIZONA STATE UNIVERSITY

Ira A. Fulton

6

2

0

0.05

Schools of Engineer Ingflection, in

Load, kips

Full Scale Track Slab Testing Arrangement

Steel Fiber Reinforced

Full scale mockup specimen testing

Monotonic Testing:

Monotonic Test results comparison

Full scale mockup specimen testing

Monotonic Tests

Observations

-Rebars still in elastic phase at 50 kip loading

DIC Data collection

Various stages of cracking

DIC measurements of level of cracking

The final state of cracks

-0.00355

Fatigue Testing (2 Million Cycles , 4Hz)

-Loading : 17.5 kips-Data Acquisition of 100 cycles per 10,000 cycles,2.0 million cycles, 8 days at 4 Hz

SFRC Specimen

-specimen was subjected to 2 million cycles of fatigue representing 50-year service life under 17.5 kips per cycle loading which is 1.6-1.9 times the service load.

Stiffness Reduction

11% reduction in average stiffness After 500k cycles

8.6% reduction in average stiffness After 2M cycles

	Unit of measure	Original Design approach	Proposed Design Approach
	16' wide x 1 mile		
	Length, depth	5280' x 14.5" thick	5280' x 12" thick
	Volume of Concrete used in yd ³	3651 cubic yards	3129 cubic yards
	Steel Rebar used	184,000 lbs #4, 298000 lbs #5	
	Steel Fiber 60 lbs per cubic yard		203,000 lbs steel fibers, 2"
	Costs		
	Concrete @ \$90 per yard	3651(90)= \$328,300	3129(\$90)= \$281,610
	Steel cost Rebar vs. Fiber (\$90/60 lbs)	#4 \$211,600+ #5\$342,700= \$554,300	3129(\$90)= \$281,610
	Inspection	\$193,527	\$75,400
	Materials Testing	\$136,000	\$53,000
	Cost steel rebar	\$554,300	
	Cost steel fibers		\$281,610
	Materials only Cost Savings/mile		-\$527,193
	1 track ft cost in place	\$3309	\$1013
	Total cost per mile	\$17,471,000	\$5,348,000
	Total Cost savings/mile		-\$12,122,800
	Project Duration for 1 mile		
	A 480' section scheduled (1 labor day	21 days	11 days
	is equivalent to 10 workers)		
	Differential per section	-10	
	A mile of track	231 days	121 days
	Differential per mile	110 days	
	Labor Costs	\$3309 per track ft labor	\$1013 per track ft labor
Ira A. School	Total cost per mile	\$17,471,520	\$5,348,640

Design Verification of Precast water tanks

Schools of Engineering

ARIZONA STATE UNIVERSITY

Load Case1:

1.4 Self weight + 1.4 Water pressure

Load Case2:

1.4 Self weight + 1.7 Earth pressure + 1.7 Uniform pressure due to surcharge

Project Background

- Increase durability, corrosion prevention
- maintain capacity at a certain level (SLS, ULS)
- reduce section size, labor
- reduce the consumption of concrete
- reduce the total cost of the project

Experimental Plan

- > Investigate the design, and performance of FRC hybrid design in precast panels.
- > 16 panels were cast, tested, analyzed and compared extensively.
- Strength, toughness, crack width control, ductility, and stiffness retention.
- Variables in terms of panel thickness(t), reinforcement ratios(ρ), Hybrid fiber and RC combinations, boundary conditions, and their effects were examined.
- Simplify the design process using sustainability approaches with standard thickness panels, reduced rebar, and reduced labor while improving durability.

Panels setup in casting yard before the pour

Plain FRC Panel Specimen

Conventional Panel specimen

Rebar arrangement for #4@12" and #5@6"

Casting and finishing Process

Bull float finish

Curved float for edging

Putting anchors on edge of a panel

Schematic of the Testing-Frame

Full-Scale panel testing (3 Different Boundary Conditions)

Ira A. Fulton Festive Scilous directed at handling, lifting and transportation of panels, Tests type 2 and 3 with 2 point and 6 point supports simulate the A RCOBNECTION TO THE Adjacent orthogonal panels in the structural box under the service conditions

Test Setup for Type-3 Boundary condition

Measuring Method for Full-scale tests

- Vertical displacement LVDT -14
- Bottom Concrete Strain gage- 6
- Rebar Strain gage 2

Digital image Correlation(DIC) – Top view, recoding yield line propagation

Central Load-Deflection Response in FRC

0

Central Deflection, in

Cyclic Fracture Tests

 Fracture tests were also conducted on small beams to study the fatigue resistance properties of fiber reinforced concrete

Simulation of Flexural Results

Discussion of Results

Effect of Fiber Type on Fiber reinforced concret^

- Both samples show a relatively high flexural strength corresponding to maximum load of 30,000 lbs, but a continuous decrease in the post-peak response since there are no rebars in these samples.
- D1 panel shows higher strength at deflections above 0.75". However, the performance of both the fiber types are similar as predicted by the flexural test results

Effect of the Boundary Conditions

 The addition of 4 more point supports increases the loading capacity by only about 10% with increased number of cracks. The paths to cracking is quite similar

F2

Bottom cracked zone

F1

Central Load-Deflection Response in Hybrid RC vs RC

Central Load-Deflection Response in Boundary Conditions

Load, kN

Point load Fan pattern +Yield Line pattern

3-point bending Crack Localization

Fatigue tests in Hybrid RC

The panels were loading in a quasi-static condition to initiate cracking after which the panels were subjected to 150000 cycles of fatigue loading at 4Hz frequency.

Fatigue test with 150000 cycles loading

In the study of 150000 cycles of fatigue loading panels with no fibers show 20% reduction in stiffness, and whereas plain FRC panels showed 9.7% reduction in stiffness

Conclusion

- •High Strength & Ductility: FRC and hybrid systems provide a strong case for service load capacity even after cracking.
- •Effective Material Modeling: Small-scale tests helped predict full-scale performance using a tri-linear tension model.
- Scalable Model: This approach offers scalable solutions various design application
 Future Potential: Modeling extended to hybrid reinforcement strategies for structural serviceability engineering

