

Hyeon-Jong Hwang Jong-Min Lee Han-Se Moon Hong-Gun Park

KU KONKUK

CONTENTS

- 1. Introduction
- 2. Basic Concept of Load Transfer during Construction
- 3. Construction Load Prediction Model
- 4. Structural Safety Assessment of Slab
- 5. Structural Safety Assessment Software

KU KONKUK UNIVERSITY

1. Introduction

✓ Gwangju

Residential Building Collapse Accident

✓ Incheon

Parking Garage Collapse Accident

1. Introduction

- ✓ Development of Structural Safety Assessment Software
 - Construction load model
 - Verification of model through comparison with field measurement
 - Cracking and load resistance of early-aged slab during construction
 - Failure probability prediction of early-aged slab during construction

J KONKUK UNIVERSITY

2. Basic Concept of Load Transfer during Construction

✓ Construction Load?

: Slab load transferred through form shores that support upper slab weight

⁵

KU KONKUK UNIVERSITY

* Assumption:

same slab stiffness

three levels of shores

KU KONKUK UNIVERSITY

: Temporary support

3. Construction Load Prediction Model

Verification Site Information

Planned Construction Schedule

- Construction cycle of each floor
- Number of floors supported by shores : 3 floors
- Removal of temporary support
- Removal of regular support

: 4 days after casting the top floor

Regualar support

: 5 days after pouring the top floor

Cast 6th floor

Remove temporary supports in 5th floor

Remove temporary supports in 4th floor

Remove regular supports in 3rd floor

Remove regular supports in 2nd floor

Remove regular supports in 1st floor

- **3. Construction Load Prediction Model**
- Measurement of axial shore force \checkmark

Remains in place even after removing the slab formwork

- supports the slab formwork
- Removed together when removing the slab formwork

3. Construction Load Prediction Model

\checkmark Conversion to Construction Load

Construction Load = Upper shore force + Self-weight of slab – Lower shore force

* At this time, the shore force should be converted to DL (Dead Load) units for calculation

 $Load_c$

KU KONKUK UNIVERSITY

: Regualar support

- **3. Construction Load Prediction Model**
- ✓ Calculation of Construction Load for Lower Floors

✓ Concrete casting of slab

$$\begin{pmatrix} DL + LL \\ 0 \\ 0 \end{pmatrix} = \begin{bmatrix} K_{ff} \end{bmatrix} \begin{pmatrix} v_2 \\ v_3 \\ v_4 \end{pmatrix}, \quad \begin{pmatrix} LS_2 \\ LS_3 \\ LS_4 \end{pmatrix} = \begin{bmatrix} K_{fsl} \end{bmatrix} \begin{pmatrix} v_2 \\ v_3 \\ v_4 \end{pmatrix}$$

$$\begin{pmatrix} LS_2 \\ LS_3 \\ LS_4 \end{pmatrix} = \begin{bmatrix} K_{fsl} \end{bmatrix} \begin{pmatrix} v_2 \\ v_3 \\ v_4 \end{pmatrix} = \begin{bmatrix} K_{fsl} \end{bmatrix} \begin{bmatrix} K_{ff} \end{bmatrix}^{-1} \begin{pmatrix} DL + LL \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{bmatrix} K_{fsl} \end{bmatrix} = \begin{bmatrix} k_{s2} & 0 & 0 \\ 0 & k_{s3} & 0 \\ 0 & 0 & k_{s4} \end{bmatrix} \quad \begin{bmatrix} K_{ff} \end{bmatrix} = \begin{bmatrix} k_{s2} + k_{21} & -k_{21} & 0 \\ -k_{21} & k_{s3} + k_{21} + k_{31} & -k_{31} \\ 0 & -k_{31} & k_{s4} + k_{31} \end{bmatrix}$$

Removal of temporary supports
 STEP 1.

 LS_1 , Slab stiffness : k_{s1}

Regular support stiffness: k_{11} , temporary support stiffness: k_{12}

 LS_2 , Slab stiffness : k_{s2}

Regular support stiffness : k_{21}

 LS_3 , Slab stiffness : k_{s3}

Regular support stiffness : k_{31}

 LS_4 , Slab stiffness : k_{s4}

$$\begin{pmatrix} LS_2 \\ LS_3 \\ LS_4 \end{pmatrix} = \begin{bmatrix} K_{fsl} \end{bmatrix} \begin{pmatrix} v_2 \\ v_3 \\ v_4 \end{pmatrix} = \begin{bmatrix} K_{fsl} \end{bmatrix} \begin{bmatrix} K_{ff} \end{bmatrix}^{-1} \begin{pmatrix} -(DL\left(\frac{k_{12}}{k_{11}+k_{12}}\right) + LL) \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{bmatrix} K_{fsl} \end{bmatrix} = \begin{bmatrix} k_{s2} & 0 & 0 \\ 0 & k_{s3} & 0 \\ 0 & 0 & k_{s4} \end{bmatrix} \quad \begin{bmatrix} K_{ff} \end{bmatrix} = \begin{bmatrix} k_{s2} + k_{21} & -k_{21} & 0 \\ -k_{21} & k_{s3} + k_{21} + k_{31} & -k_{31} \\ 0 & -k_{31} & k_{s4} + k_{31} \end{bmatrix}$$

✓ Removal of regular supports

$$\begin{pmatrix} LS_1 \\ LS_2 \\ LS_3 \end{pmatrix} = \begin{bmatrix} K_{fsl} \end{bmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{bmatrix} K_{fsl} \end{bmatrix} \begin{bmatrix} K_{ff} \end{bmatrix}^{-1} \begin{pmatrix} 0 \\ 0 \\ Load_{sh} \end{pmatrix}$$

$$\begin{bmatrix} K_{fsl} \end{bmatrix} = \begin{bmatrix} k_{s1} & 0 & 0 \\ 0 & k_{s2} & 0 \\ 0 & 0 & k_{s3} \end{bmatrix}$$

$$\begin{bmatrix} K_{ff} \end{bmatrix} = \begin{bmatrix} k_{s1} + k_{11} & -k_{11} & 0\\ -k_{11} & k_{s2} + k_{11} + k_{21} & -k_{21}\\ 0 & -k_{21} & k_{s3} + k_{21} \end{bmatrix}$$

✓ Prediction result

✓ Prediction result

$$f_{c}(t) = \exp\left\{\alpha_{fit} \cdot 0.35\left(1 - \sqrt{\frac{28}{t}}\right)\right\} f_{c28}$$

4F: $f_{c28} = 56$ MPa, $\alpha_{fit} = 0.75$
5F: $f_{c28} = 65$ MPa, $\alpha_{fit} = 0.90$
6F: $f_{c28} = 54$ MPa, $\alpha_{fit} = 0.85$
7F: $f_{c28} = 56$ MPa, $\alpha_{fit} = 1.00$

Construction schedule for concrete casting and shoring

Floor	Concrete	Insta	llation	Ren	noval
Floor	casting	Regular	Temporary	Regular	Temporary
3F	-	Aug 22	Aug 22	09/24	Aug 29
4F	Aug 23	Aug 30	Aug 30	Oct 05	Sep 3
5F	Sep 2	Sep 16	Sep 16	Oct 11	Sep 22
6F	Sep 20	Sep 26	Sep 26	Oct 27	Sep 29
7F	Sep 28	-		-	

✓ Comparison of results

- (1) Cast 4th floor
- (2) Remove temporary supports in 3^{rd} floor
- (3) Remove regular supports in 1st floor
- (4) Cast 5th floor
- (5) Remove temporary supports in 4th floor
- (6) Remove regular supports in 2^{nd} floor
- (7) Cast 6th floor
- (8) Remove temporary supports in 5th floor
- (9) Remove regular supports in 3^{rd} floor

- (10) Cast 7th floor
- (11). Remove temporary supports in 6^{th} floor
- (12) Remove regular supports in 4th floor
- (13) Cast 8th floor
- (14) Remove temporary supports in 7th floor
- (15) Remove regular supports in 5^{th} floor
- (16). Cast 9th floor
- (17). Remove temporary supports in 8th floor Remove regular supports in 6th floor

4. Structural Safety Assessment of Slab

✓ Load corresponding to slab strength development during construction (Capacity)

$$\phi_c \mathbf{R}_s \ge \gamma_c \mathbf{C}_t$$
, $\mathbf{R}_s = \mathbf{R}_n(t)$, $\mathbf{R}_n(t) = \alpha(t) \frac{\gamma_D \mathbf{D} + \gamma_L \mathbf{L}}{\phi}$

$$\Rightarrow \quad \frac{C_t}{D} \le \frac{\phi_c}{\phi} \frac{\alpha(t)}{\gamma_c} \left(\gamma_D + \gamma_L \frac{L}{D} \right)$$

4. Structural Safety Assessment of Slab

✓ Failure probability

Cumulative distribution addressing construction errors of 1) concrete cover and 2) design models

30

V

0.06

0.10

0.06

0.08

0.06

0.06

- Mean and Standard Deviation for Calculating Flexural Strength Failure Probability

$$m(\alpha(t)) = \frac{\phi A_{s} f_{y}(d - m_{d} - 0.5\alpha(t))}{M_{u}} \qquad \sigma(\alpha(t)) = \sqrt{\frac{(\phi A_{s} f_{y})^{2} \sigma_{d}^{2}}{(M_{u})^{2}}}$$

$$m(R_s) = \frac{\phi_c}{\phi} m(\alpha(t))(1.2 + 1.6\frac{L}{D}) \quad \sigma(R_s) = \frac{\phi_c}{\phi} \sigma(\alpha(t))(1.2 + 1.6\frac{L}{D})$$

$$m_P(R_s) = m(R_s) \times m_P \qquad \sigma_P(R_s) = \left[\left(\frac{\sigma(R_s)}{m(R_s)} \right)^2 + \left(\frac{\sigma_P}{m_P} \right)^2 \right]^{0.5} \times m_P(R_s)$$

- Mean and Standard Deviation for Calculating Shear Strength Failure Probability $m_P(R_s) = R_s \times m_P$ $\sigma_P(R_s) = R_s \times \sigma_p$

- Consideration Variables \checkmark for Flexural Strength Failure Probability
 - Construction Error in Cover Thickness ($m_d = 2.25$, $\sigma_d = 8.97$)
 - Error in Experiment/Prediction ($m_p = 1.02$, $\sigma_p = 0.06$)
 - Consideration Variables for Shear Strength Failure Probability
 - Error in Experiment/Prediction ($m_p = 1.43$, $\sigma_p = 0.246$)

Measurment

Prediction

- 4. Structural Safety Assessment of Slab
- ✓ Flexural strength of slab

KU KONKUK

Cracking resistance of slab \checkmark

✓ Pre-Construction Safety Assessment

✓ Pre-Construction Safety Assessment

대표슬레브설정 건물밎슬래브정보 가설계획 구조계산정보 재료정보		대표 슬래브 설정 건물 및 슬래브 정보 가설	계획 구조계산정보 재료정보
대표 슬래브 영역 설정 가설도면 업트드	^	건물 및 슬랙브 정보 슬래브 중류 선택 1방향 슬래브	1방향 슬레브의 스편 스팬·평면에서 x방향 또는 y방향으로 center to center 스팬이 가장 긴 곳 (대각방향이 아는
Prag and drop file here Limit 200MB per file-JPG, PNG, JPEG, PDF 승리브 선택 확대할 영역 선택 반시계 방향 회전 전과 보기	Browse files	슬랜브 넣이(m) 53.37 스팬 (mm) 5220	 ▲려보의 넓이·가동 특은 내려복 증심선 가준의 대상 슬려보의 넓이
		승택보 두제 [mm] 210 유효 스템계수 0.80 중고 [mm](바닥부터 천장까지의 높이) 2820 전체 중수 [중] 27	- + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - +

✓ Pre-Construction Safety Assessment

- Determination of Effective Span

✓ Pre-Construction Safety Assessment

중력하	중 정보 입력				
D	고정하중 [N/m ³]	물 및 슬랜 프 정보 기설 계획 구조계상 정보 지표 정보 [(구조계상서 참고) [[N/m] + 7D 고경자중의 마중조합계수(debult = 1.2) [[[[[] 이 가중조합계수(debult = 1.6) [] [] 이 가중조합계수(debult = 1.6) [] [] 이 가중조합계수(debult = 1.6) [] [] 이 가중조합계수(debult = 1.6) []] []] [] [] []] []] []] []] []]] []]] []]] []]]]]]] []]]]]]]]]]]]]			
D	5.04	- +	γ_D	1.20	
r	활하중 [N/m ¹]			활하중의 하중조합계수(default = 1.6)	
L	2.50	- +	γ_L	1.60	
•					
시공하	중 정보 입력				
γ_{C}	시공하중의 하중조합계수(default = 1.0)		ø.	(시공하중 안전율, default - 1.0)	
10	1.00	- +	1.0	1.00	
설계부	재력입력				
М	단위 설계 정모멘트 [kN · m/m]		þ	(휨강도 안전율. 강도감소계수)	
<i>w</i> _u	18.45	- +	Ψ	0.85	
V	단위 설계 전단력 [kN/m]		d	(전단강도 안전율, 강도감소계수)	
V u	23.17	- +	φ_V	0.75	
•					

KU KONKUK UNIVERSITY

✓ Effective supporting area

5. Structural Safety Assessment Software

✓ Pre-Construction Safety Assessment

- Shoring stiffness for a single floor

✓ Pre-Construction Safety Assessment

- Construction schedule

대표슬래브설정 건물및슬	래브정보 가설계획
가설 계획	
동바리 지지 층수 [층]	
3	- +
층 당 시공주기 [일]	
7	- +
필러서포트 제거 시점 [일]	
5	- +
일부동바리 제거 시점 [일]	
3	- +

Construction Schedule Generation Based on the 1st Floor Slab Casting Date

\checkmark	Pouring Schedule	✓ Temporary Support Removal Schedule	✓ Regular Support Removal Schedule
	1F: day 0	1F: day 10	1F: day 27
	2F: day 7	2F: day 17	2F: day 34
	3F: day 14	3F: day 24	3F: day 41
	4F: day 21	4F: day 31	4F: day 48
	:	:	:

✓ Pre-Construction Safety Assessment

대표슬래브섭정 건물및슬래브정보 가석계획 구?	조계산정보 재료정보	
재료정보입력		
슬래브 주철근 정보 입력		^
슬래브 철근 직경 선택		인장철근 간격 [mm]
d 10	~	300 - +
설계 철근 항복 강도 [MPa]		압축철근 간격 [mm]
500	- +	300 - +
		슬래브 상부 피복 두께 [mm]
		30 - +
		슬래브 하부 피복 두께 [mm]
		30 - +
콘크리트 정보 입력		^
28일 콘크리트 설계 강도 [MPa]	• (기준에 의히	하여 계산시에는 입력값에 8 MPa이 더해진다.)
32 -	* 28일 실제 콘	르크리트 강도를 맞추는 경우 설계 강도에서 8MPa를 뺀 값을 입력
	예) 28일 실제	제강도 30MPa인 경우 22MPa로 입력해야 계산시 30MPa로 인식
강도 발현식 선택		
KDS	~	
양생 방법 선택		
습윤 양생	~	
시멘트 종류 선택		
1종 시멘트	~	
콘트리트 탄성 계수식 선택	탄성계수 보정 계수	F (recommanded value = 4100)
보정식	✓ 4100	- +
콘크리트 강도발현식 확인		콘크리트 탄성 계수식 확인
		1
$f_c(t) = \exp \left\{ 0.35 \left(1 - 1 \right) \right\}$	$\left(\frac{28}{t}\right) \left\{ f_{c28} \right\}$	$E_c = a_E \cdot (f_{c28})^2 \;, \;\; a_E = 4100$
콘크리트 강도 발현 곡선		탄성계수 곡선
40		25k
[편] 30		20k

✓ Pre-Construction Safety Assessment

- Concrete strength development

✓ Pre-Construction Safety Assessment

- Elastic modulus of concrete

✓ Pre-Construction Safety Assessment

구조 안전성 평가		시고 저 아저성 평가	I
시공 전 안전성 평가			
지금 동/후 단엔영 평가 장기처짐 평가	 결과 확인 휠/전단강도 안전성 평가 균열 저항 성능 평가 	1중 ✓ 대상슬레브섬정 건물및슬레브정보 가설계획 구조계산정보 재료정보 대상슬레브영역 설정	
입력 데이터 다운로드	횖강도 안전성 평가	가설도면 업로드	^
입력 데이터 불러오기	전단광도 안전성 평가	Drag and drop file here Linit 200MB per file - JPG, PEG, PDF Brow	/se files
Limit 200MB per file - JSON		승규브 선택	<u>^</u>
		확대할 영역 선택	
		반시계 방향 회전 시계 방향 회전	
		편과 보기	~
			_
			• •

✓ During and Post-Construction Safety Assessment

✓ During and Post-Construction Safety Assessment

구조 안전성 평가			시공	· 중/후 연	안전성 평기	የ					
시공 중/후 안전성 평가 자기처직 평가	□ 안전성 평가 결과 확인	□ 데이터 반영 시각화	데이터초기화	1층 👻	시공일정입력 재료시험						_
0.1.1.0.0.1	흼/천단강도 안전성 평가 균열 저항 성능 평가				today		Octob	er 2024			<
데이터 다운로드					Sun	Mon	Tue	Wed	Thu I	ari .	Sat
히불러오기 nd drop file here								2	3	4	
00MB per file + JSON					б	7	8	9	10	11	
					12	14	15	16	17	10	
					13	14	15	10	17	10	
					20	21	22	23	24	25	
					27	28	29	30	31		
						4				8	
					시공 일정 추가 🗸			동바리 개수 입력	~		
					시공일정 자동 생성 🗸						

KII KONKUK

Conclusions

- 1. Construction load : at early-aged slab concrete
- 2. Critical to slab cracking & load resistance
- 3. Prediction model of construction load
- 4. Prediction of failure probability of slab under construction
- 5. Structural Safety Assessment Software