

Center for

Center for Advanced Construction Materials

Development of Net-Zero Embodied Carbon Concrete Using Carbon- and Cellulose- based Byproducts and Nanomaterials

Panagiotis A. Danoglidis¹, Mohammad Jaberizadeh², Maria S. Konsta-Gdoutos³

¹Assistant Professor Program Coordinator, University Transportation Center for Durable and Resilient Transportation Infrastructure The University of Texas at Arlington panagiotis.danoglidis@uta.edu

²Ph.D. Student Center for Advanced Construction Materials The University of Texas at Arlington mohammad.jaberizadeh@uta.edu

³Professor of Civil Engineering Director, University Transportation Center for Durable and Resilient Transportation Infrastructure Associate Director, Center for Advanced Construction Materials maria.konsta@uta.edu

ACI Fall Convention 2024 Decoupling of Concrete Production from Embodied Carbon Emissions through Nanotechnology, Part 2 of 2 Philadelphia, PA, USA November 3-6. 2024

Controlling the Carbon Footprint of Concrete:

Development of Sustainable, Eco-efficient Concrete Using Agricultural Waste/Byproducts

Biochar

- ✓ Unique 3D porous structure
- ✓ Extremely high stoichiometric CO_2 uptake potential (≈60%)

Konsta-Gdoutos, M.S. et al. 2023 Cement and Concrete Composites, 140, p. 105078 Konsta-Gdoutos, M.S. et al. 2023 Construction and Building Materials, 392, p. 132021

2

Mechanical Properties of Biochar Concrete

Mishra, G., Danoglidis, P.A., Shah, S.P., Konsta-Gdoutos, M.S. 2023 Cement and Concrete Composites, 140, p. 105078 Mishra, G., Danoglidis, P.A., Shah, S.P., Konsta-Gdoutos, M.S. 2023 Construction and Building Materials, 392, p. 132021

3

CO₂ Mineralization Capacity of Biochar Concrete

4

Carbonated Biochar Concrete-SEM images

Porous biochar provides channels for CO₂ diffusion within concrete

Mishra, G., Danoglidis, P.A., Shah, S.P., Konsta-Gdoutos, M.S. 2023 Cement and Concrete Composites, 140, p. 105078

Carbonated Biochar Concrete-SEM images

Porous biochar provides channels for CO₂ diffusion within concrete

Precipitation of calcium carbonate crystals in Biochar concrete

Mishra, G., Danoglidis, P.A., Shah, S.P., Konsta-Gdoutos, M.S. 2023 Cement and Concrete Composites, 140, p. 105078

Eco-Efficient Concrete Using Waste Cellulose Fibers

Incineration of Waste Cellulose Fibers

μ μ μ μ μ μ μ μ μ μ

Cellulose Fibers

➤ ~10% is being recycled

Intrinsic Properties of Cellulose Fibers

- ✓ High Tensile Strength (~250-1200 Mpa)
- ✓ Low Thermal Conductivity (<0.072 W/m.K)
- ✓ High Water Retention/Release Capacity (300wt.%<)
- ✓ Light Weight

Advantages

Abundant Resources Fast Renewability Low Cost Low Carbon Footprint

Mechanical Properties of WCF-Concrete

Deterioration of the mechanical properties of the 28-day WCF-Concrete specimens:

- -5% Flexural Strength and Young's Modulus
- -10% Tensile Energy Strain Absorption Capacity

Mechanical Properties of WCF-Concrete

Embrittlement/Loss of Elasticity

Cellulose Fibers, Polypropylene Fibers, Basalt Fibers, Polyamide Fibers

Disintegration of WCF

Loss of Interfacial Bonding

American Concrete Institute

9

Deterioration of the mechanical properties of the 28-day WCF-Concrete specimens:

- -5% Flexural Strength and Young's Modulus
- -10% Tensile Energy Strain Absorption Capacity

Carbonation Curing of WCF-Concrete

- 1. Carbonation, 6% and RH=65%
- 2. Conventional Curing, RH=95%, 3 days
 - + Carbonation, 6% CO₂ and RH=65%

Preferential Formation of Carbonation Products at the fiber-matrix interface

Selectively reduce the alkalinity at fiber-matrix interfacial area

Prevention of fiber hydrolysis

Reducing the Alkalinity at WCF-Matrix Interface

28-Day Conventional Curing RH 95%

28-Day Carbonation 6% CO₂, RH 65%

Mechanical Properties of Carbonated WCF - Concrete

28-Day Specimens	Compressive Strength (MPa)	Modulus of Elasticity (GPa)
M0%WCF	31.72	21.34
M0.15%WCF	l 33.91	24.27

Ductility of Carbonated WCF - Concrete

Dual Purpose Carbonation: Increase the Carbon Mineralization Capacity nventional Curing, RH=95%, 3 days of WCF Reinforced Concrete

Similarly to the biochar, the tubular Morphology of WCF provides channels for enhanced mineralization

> Formation of calcium carbonates in the WCF/Matrix interface

Carbon Footprint of Eco-Efficient Concrete

CO₂ Sequestration of GNP Reinforced Biochar - OPC

Conclusions

Enhanced Resiliency

- ✓ +15% First crack strength
- ✓ +16% Modulus of Elasticity

Enhanced Ductility

- ✓ 1.5x higher toughness
- ✓ 1.4x higher fracture energy

WCF-OPC

Biochar-OPC

Acknowledgements

The authors would like to acknowledge the financial support of the National Science Foundation – Partnerships for International Research and Education (PIRE) Research Funding Program "Advancing International Partnerships in Research for Decoupling Concrete Manufacturing and Global Greenhouse Gas Emissions" (NSF – PIRE – 2230747) and the U.S. Department of Transportation - University Transportation Centers Program "Tier 1 University Transportation Center for Durable and Resilient Transportation Infrastructure (DuRe-Transp)" (69A3552348339).

Advancing International Partnerships in Research for Decoupling Concrete Manufacturing and Global Greenhouse Gas Emissions

