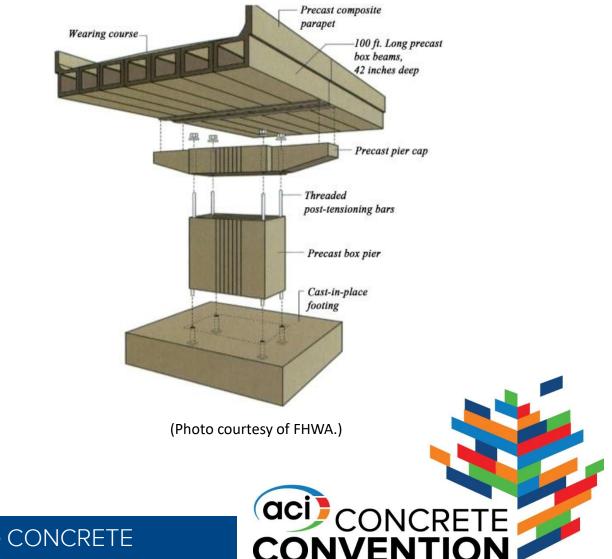

Evaluation of Hollow-Core-FRP-Concrete-Steel Column and Footing Connection

Omar Yadak, Royce W. Floyd, Ph.D., P.E., S.E.(OK), Jeffery S. Volz, SE, PE, PhD

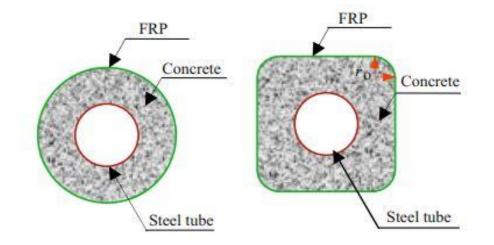
Presenter: Omar Yadak

Outline



Introduction

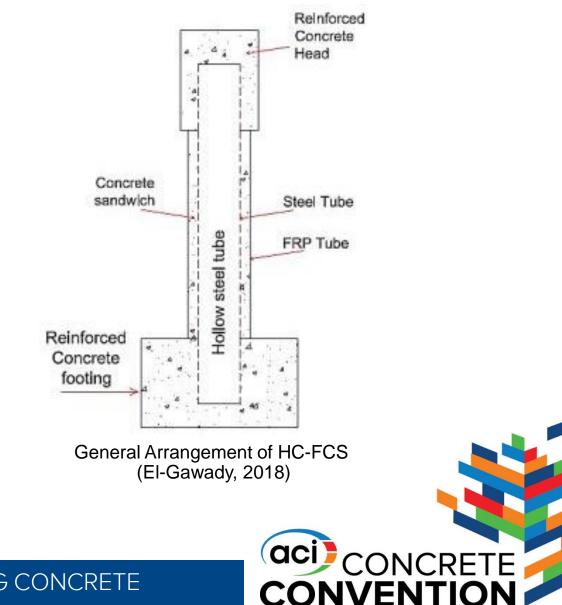
Accelerated Bridge Construction (ABC)


- Prefabricated elements
- Significant for rehabilitation
- Advantages:
 - -Site constructability
 - -Traffic flow
 - -Work zone safety
 - -Project delivery time

Column Design for Accelerating Substructure Construction

- Hollow-Core FRP-concretesteel columns (HC-FCS)
 - -60% to 75 % less material
 - -Confinement of concrete
 - -Stay-in-place formwork

5



Cross-section view of HC-FCS (Lu Han, 2010)

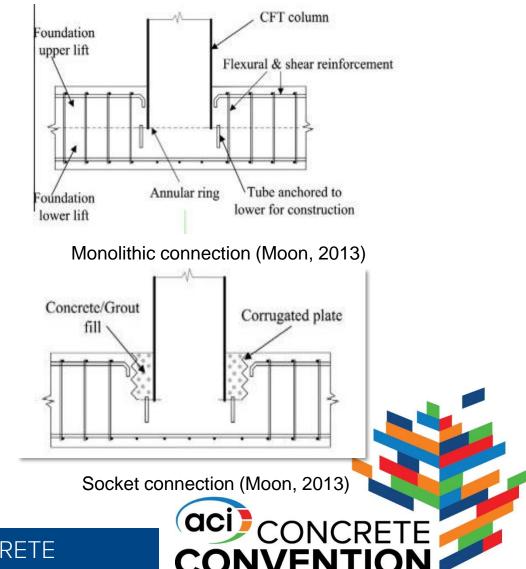
HC-FCS Columns

- Composite column
 - -FRP
 - -Concrete shell
 - -Steel pipe
- The steel pipe is used to connect to the footing

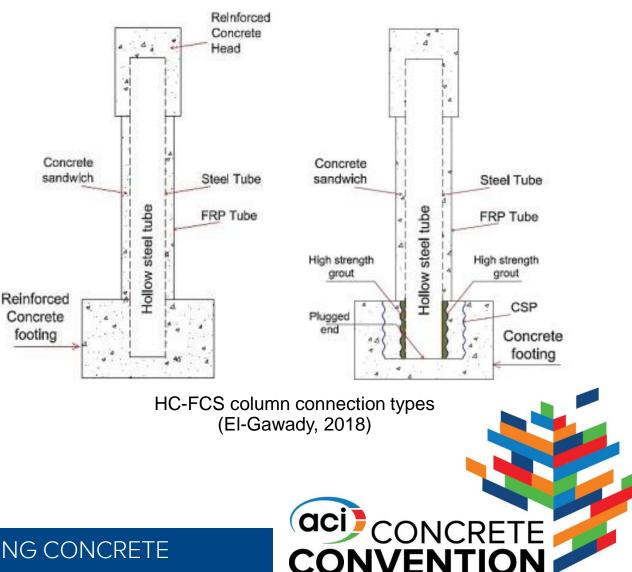
Literature Review

Column Designs for ABC

- Concrete-filled steel tubes (CFSTs)
- Concrete-filled FRP tubes (CFFTs)
- Hollow-core concrete columns
- Hollow-core FRP concrete columns (HC-FCS)

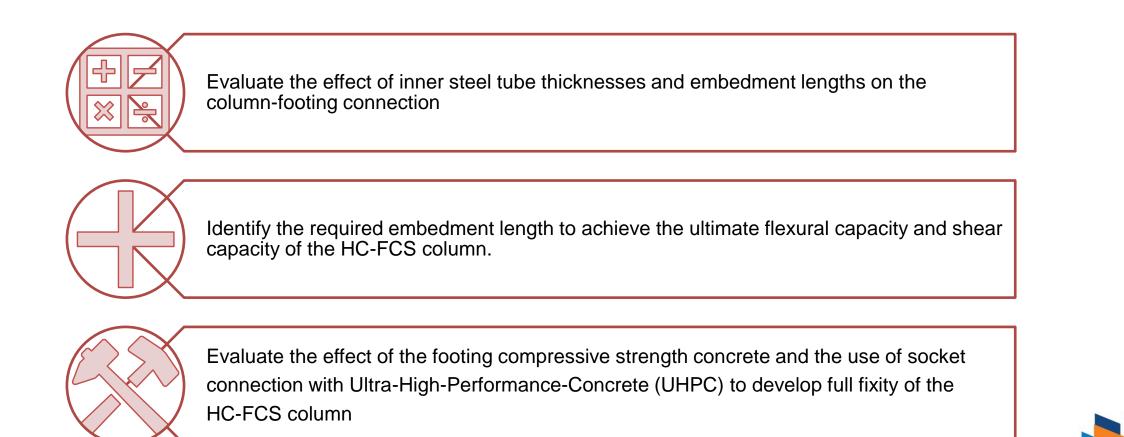

Hollow-core concrete columns (LintelTech)

CFST columns (Khaleghi, Bijan)


Column-Footing Connection Designs

- Lehman & Moon, 2013
 CFT columns
- Monolithic & socket connections
- Connection design
 - -Develop ultimate strength
 - Provide ultimate ductility in seismic regions
 - -No significant slip
 - -Simple and economical for ABC

ElGawady, 2015 and 2018


- HC-FCS columns
- Monolithic vs socket connections
- Socket
 - Developed the column's plastic flexural capacity
 - Better ductility and energy dissipation than monolithic

Research Objectives

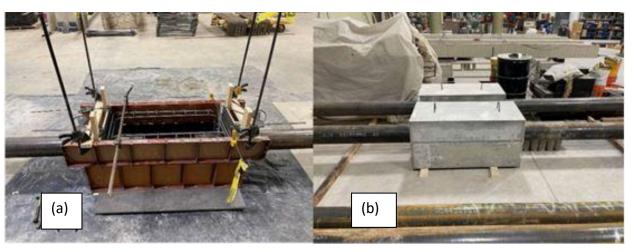
Research Objectives

acı

CONCRETE

12

Approach & Methodology

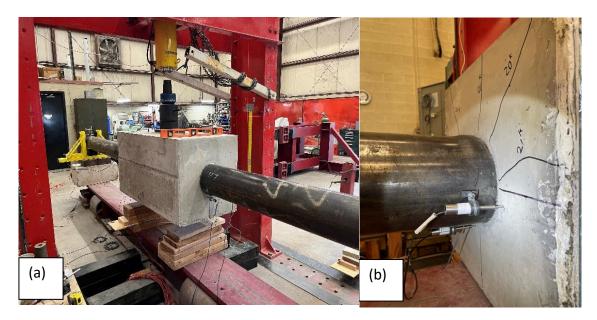

Design Approach

- Column capacity calculations
 - Based on a current project
 - Methods from Moon, 2013 and ElGawady, 2015
- Footing design
 - Support nominal capacities of HC-FCS
 - Failure in the column or connection
- Trial specimen
 - Smaller representation of the test specimens

- Steel pipe and footing
- Dimensions
 - -2-ft by 2-ft by 4-ft
 - -7-ft-4-in. extension of steel pipes
- Tested as a simply supported beam
- Potential failures investigated
 - -Steel pipe flexure
 - Pullout failure
 - -Footing failure

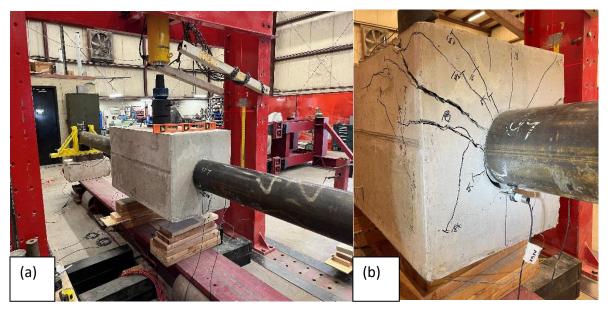
Specimen 1 (a) formwork setup and (b) at 7-days of age

Parameter Matrix


Specimen	Embedment Length (in)	Diameter/ Thickness	f'c (psi)	Connection	
Column-Footing Specimen1	1.6D	8.625/.219	10000	Monolithic	
Column-Footing Specimen2	1.8D	8.625/.219	10000	Monolithic	
Column-Footing Specimen3	1.6D	8.625/.219	5000	Monolithic	
Column-Footing Specimen4	1.8D	8.625/.219	5000	Monolithic	
Column-Footing Specimen5	Eq.	8.625/.219	5000	Monolithic	
Column-Footing Specimen6	1.6D	8.625/.219	5000	Monolthic with Shear Lugs	
Column-Footing Specimen7	1.6D	6.625/.25	5000	Monolithic	
Column-Footing Specimen8	1.6D	8.625/.219	5000	Socket	
Column-Footing Specimen9	1.6D	8.625/.219	5000	Socket	

Preliminary Results

- Failure Load of 21,054 lb
- Steel pipe local buckling
 No damage in the footing
- No Significant Separation


Specimen 1 (a) loading set up and (b) local buckling failure of the steel pipe

CONCRETE

CONVENTIO

Specimen	Embedment Length (in)	Diameter/ Thickness	f'c (psi)	Connection
Column-Footing Specimen1	1.6D	8.625/.219	10000	Monolithic

- Failure Load of 18,984 lb
- Pullout failure
 - -Separation of more than 2 in.
 - -Significant damage in the footing

Specimen 3 (a) loading set up and (b) pullout failure

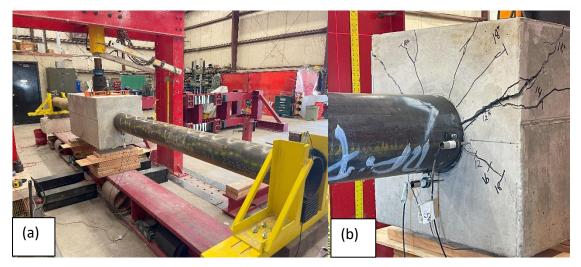
CONVENTION

Specimen	Embedment Length (in)	Diameter/ Thickness	f'c (psi)	Connection
Column-Footing Specimen3	1.6D	8.625/.219	5000	Monolithic

- Failure Load of 20,740 lb
- Steel pipe local buckling -Some damage in the footing
- Separation approximately 0.25 in.

Specimen 4 (a) loading set up and (b) local buckling failure of the steel pipe

CONCRETE


CONVENT

Specimen	Embedment Length (in)	Diameter/ Thickness	f'c (psi)	Connection
Column-Footing Specimen4	1.8D	8.625/.219	5000	Monolithic

- Failure Load of 18,109 lb
- Pullout failure

21

- -Separation more than 2 in.
- -Significant damage in the footing

Specimen 5 (a) loading set up and (b) pullout failure

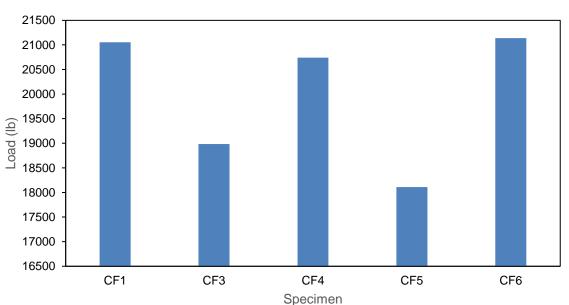
Specimen	Embedment Length (in)	Diameter/ Thickness	f'c (psi)	Connection
Column-Footing Specimen5	Eq.	8.625/.219	5000	Monolithic
Embedment lengt	n equation d			2013
ADVANCING CONCR	ETE	С	ON	VENT

- Failure Load of 21,136 lb
- Footing failure
 - -Pullout failure occurred
 - -Separation more than 3 in.

Specimen 6 (a) loading set up and (b) pullout failure

aci

CONCRETE


CONVENTIO

Specimen	Embedment Length (in)	Diameter/ Thickness	f'c (psi)	Connection
Column-Footing Specimen6	1.6D	8.625/.219	5000	Monolthic with Shear Lugs

Preliminary Findings

- CF1, CF4, and CF6
 - -Failure load exceeded 20,000 lb
 - Steel pipe local buckling for CF1 and CF4
 - -Footing failure for CF6
- CF3 and CF5
 - -Not sufficient embedment length
 - Pullout failure

Maximum Failure Load

Next Steps

Socket Connection Specimens

- Two trial specimens
 - -Corrugated Steel Pipe (CSP) and plastic sheeting
 - -Sand blasted surface
 - Socket thickness is 1.5-2 in. filled with UHPC

CONVENTION

References

- AASHTO LRFD Bridge Design Specifications, 8th Edition, 2017
- Albitar, M., Ozbakkaloglu, T., and Fanggi, L., Behavior of FRP-HSC and FRP-HSCSteel Double-Skin Tubular Columns under Cyclic Axial Compression. Journal of Composites for Construction, 2015
- Building Code Requirements for Structural Concrete (ACI 318-19): An ACI Standard ; Commentary on Building Code Requirements for Structural Concrete, 2019.
- ElGawady, M., Gheni, A., Anumolu, S., and Abdulazeez, M., Seismic Performance of Innovative Hollow-Core FRP–Concrete–Steel Bridge Columns. Journal of Bridge Engineering, 2015: p. 04016120.16.
- ElGawady, M., and Abdulazeez, M., Column-Footing Connection Evaluation of Hollow-Core Composite Bridge Columns. Missouri University of Science and Technology, 2018

- Han, L., Tao, Z., Liao, F., and Xu, Y., Tests on cyclic performance of FRP–concrete–steel double-skin tubular columns. Fuzhou University, 2010.
- Moon, J., Lehman, D., Roeder, C., and Lee, H., Evaluation of embedded concrete-filled tube (CFT) column-to-foundation connections. University of Washington, Seattle, 2013.
- Ali Khan, 2015. "Modular Bridge Construction Issues". Online. <u>https://www.sciencedirect.com/topics/engineering/prefabricated-component</u>
- Khalenghi, 2016. "Concrete Filled Steel Tube Bridge Pier Connections – An ABC Solution"
- LintelTech. "LT Round Hollow Columns". Online. <u>http://www.linteltech.com/services-content/round-hollow.html</u>

Thank you!

Questions?

CONCRETE CONVENTION