

Fall-2023 Convention of American Concrete Institute (ACI)

Saturday, October 28, 2023 Wednesday, November 01, 2023

Quantification, Damage Mitigation, and Preservation of Concrete Bridges and Structures under Natural and Man-Made Hazards, Part 2 of 2 Moderators: Dr Hyeon Jong Hwang and Dr Yail Jimmy Kim

Achieving Multi-Hazard Resilience of Bridge Infrastructure under Extreme Loading

Professor Dr Vasant Matsagar

(Professor and Dogra Chair)

Multi-Hazard Protective Structures (MHPS) Laboratory Department of Civil Engineering Indian Institute of Technology (IIT) Delhi India

Monday, October 30, 2023

11:00 a.m. - 01:00 p.m., W-Marina Ballroom I, Westin Boston Seaport District, Boston Convention and Exhibition Center, USA

Agenda

- ✓ Failures of Lifeline Structures: Bridge and Bridge Failures at Deck or Piers
- ✓ Multi-Hazard Protective Structures
 - Need for Multi-Hazard Studies in Structural Engineering
 - Need : Multi-Hazard Assessment of Structures
 - Global Overview of Hazard Scenario
 - Why Study Multi-Hazard Effects?
- ✓ Multi-Hazard Assessment under Earthquake and Scour
- ✓ Hazards During Design Life of Structure
 - Losses due to Multi-Hazard (Extreme?) Events
 - Different (Multi-) Hazards for Structures
 - Multi-Hazard Assessment under Independent Hazards
 - Historical Overview of Multi-Hazard Scenario
- Multi-Hazard Assessment under Earthquake and Wind
- ✓ Assessment Methodology for Global MHA Scenario
 - Assessment Methodology An Example of MHA
- ✓ General Framework for Multi-Hazard Scenario
- ✓ Multi-Hazard Scenario-Based Analysis
- Probabilistic Assessment Methodology Independent Hazards
- ✓ Other Code/Specifications/Standards
- ✓ Dynamic Response Control under MH-Scenarios in Bridges
- $\checkmark~$ Experience from the USA
- ✓ Future Vision and Outlook
- ✓ Concluding Remarks

Communication (Lifeline) Network 2/40

Failures of Lifeline Structures: Bridge

Damage of Bridges During Earthquakes

Bridge Failures at Deck or Piers

Bridge Failures at Deck or Piers

Bridge Pier Damage During Kobe Earthquake

Bridge Failures at Deck or Piers

Accidental/ Manmade Hazards

I-95 Overpass Collapses in Philadelphia After a Tanker Fire

-34

ONL ONLIGHT

Vehicle Impact

Connecticut after a Tanker Fire 6/

Multi-Hazard Protective Structures

- 1. Dynamic Phenomena, Vibrations, and Response Control
- 2. Earthquake Engineering
- 3. Wind Engineering
- 4. Fire Engineering
- 5. Blast Engineering and Protective Structures
- 6. Advanced Engineered Materials and their Composites: Fibre Reinforced Polymers (FRP) in Prestressed Concrete Structures

Need for Multi-Hazard Studies in Structural Engineering

Global Overview of Hazard Scenario

2016 Munich Re, Geo Risks Research, NatCatSERVICE (As of March 2016).

Why Study Multi-Hazard Effects?

I-10 Bridge Collapse in Arizona, 2015

 $30' \times 50'$ chunk of the bridge collapse

10/40

Heavy rain causing scouring with wash away of riverbed materials

- Event type Heavy <u>Rains</u> after <u>Hurricane</u> Dolores.
- Major set-back as ~20,000 cars pass everyday connecting California and Arizona.

Why Study Multi-Hazard Effects?

Hurricane Matthew, 2016

Storm surges have caused major flooding in St Augustine, Florida

Hurricane Matthew washes away parts of A1A in Flagler County

- Event type Heavy <u>Wind</u>, <u>Storm Surge</u>, and <u>Flood</u> with rages of <u>Fire</u>.
- > > 1650 fatalities.
- Insured losses > 10 billion US\$.

Multi-Hazard Assessment under Earthquake and Scour

- Earthquakes and flood-induced scouring -major concern for the lifeline bridge engineering research communities.
- Simultaneous occurring events.
- Examples:
- Countless Weir Bridge, England, 1968
- ✓ Schoharie Creek Bridge, USA, 1987
- ✓ I-5 Bridge, Coalinga, USA, 1995
- ✓ Walnut Street Bridge, USA, 1996
- ✓ Malahide Viaduct, Ireland, 2009
- ✓ Railway Bridge RDG1 48, England, 2009
- ✓ CPR Bonnybrook Bridge, Canada, 2013
- ✓ I-10 Bridge, 2015, USA

(a) Flood and Earthquake Hazard Damage in Bridges; (b) Earthquake and Wind Loads on Structures. ^{12/40}

Why Study Multi-Hazard Effects?

Multiple hazards - Earthquakes, Strong Winds, Blasts, Fire Outbreaks, Floods, Tsunamis, Landslides, Storm Surge, etc.

Global devastations in terms of physical and socioeconomic losses.

Multi-hazard has been coined in the broader context of *risk reduction*.

Limited progress in *protection of structures* against the multiple hazards

This is neither simple and straightforward nor commonly undertaken at present.

> Multi-Hazard Resilient Society

13/40

Hazards During Design Life of Structure

Natural Hazards	2015 (Original figures)	2014 (Original figures)	Average of the last 10 year 2005-2014 (Losses adjusted of inflation based or country CPI)	verage of the Average of the ast 10 years 10 years 2005-2014 1985-20 (Losses adjusted to nflation based on country CPI) country CF		Significant Year 1985 -2014	
Number of events	1,060	980	870	870 670		980 (2014)	
Overall losses in US\$ m	90,000	110,000	180,000		130,000	424,000 (2011, e.g. EQ Japa	n)
Insured losses in US\$ m	27,000	31,000	56,000	0 34,000		132,000 (2011, e.g. EQ Japa	n)
Fatalities	23,000	7,700	68,000		54,000	296,000 (2010, e.g. EQ Hait	i)
		Numbe incide	er of Dents	eaths	Insured loss (\$ millions)		
All manmade disasters		155	5 6	6,994	\$8,983		

World Natural and Manmade Catastrophes, 2015 (2016 Munich Re, Geo Risks Research, NatCatSERVICE) (As of January 2016)

Losses due to Multi-Hazard (Extreme?) Events

Rank	Date	Country	Events : Multi-Hazard ??	Insured loss
1	Aug. 25, 2005	U.S., Gulf of Mexico	Hurricane Katrina, storm surge, damage to oil rigs	\$79,663
2	Mar. 11, 2011	Japan	Earthquake (Mw 9.0) triggers tsunami	36,865
3	Oct. 24, 2012	U.S., Caribbean, Canada	Hurricane Sandy, massive storm surge	36,115
4	Aug. 23, 1992	U.S., Bahamas	Hurricane Andrew, floods	27,017
5	Sep. 11, 2001	U.S.	Terror attacks on WTC, Pentagon and other buildings	25,129
6	Jan. 17, 1994	U.S.	Northridge earthquake (Mw 6.7)	24,455
7	Sep. 6, 2008	U.S., Gulf of Mexico, Caribbean	Hurricane Ike	22,343
8	Feb. 22, 2011	New Zealand	Earthquake (Mw 6.1), aftershocks	16,853
9	Sep. 2, 2004	U.S., Caribbean, Venezuela	Hurricane Ivan, damage to oil rigs	16,180
10	Jul. 27, 2011	Thailand	Heavy monsoon rains, extreme flooding	15,799

Top 10 Costliest World Insurance Losses, 1970-2015 (2016 Swiss Re)

Losses due to Multi-Hazard (Extreme?) Events

World Natural Catastrophe Losses First Half, 2016 (2016 Munich Re, NatCatSERVICE)

Different (Multi-) Hazards for Structures

- Natural hazards
- Manmade or accidental hazards

Earthquake

- Random
- Duration is few seconds to minutes
- Presence of acceleration and velocity pulse (at near-fault location)
- Travels through soil/ rock below the ground

- Blast
- Impulsive in nature
- Duration is in mili-seconds
- Travels through air, ground surface, and through soil/ rock below the ground (BIGM)

Different (Multi-) Hazards for Structures

- Main Objective of Control Systems
 - To minimize the energy imparted to a structure, thereby reduce damage
- Source of other forces / excitations:
 - Underground rail/ vehicular movement (noise)
 - Earthquake (seismic)-induced loads
 - Wind-induced vibration (low frequency)
 - Blast (shock/ impact)
 - Vibrating equipment (may match modal frequency or frequencies)

	Loads
-	Combinations
	Multi-Hazard Effects

Hazards During Design Life of Structure

Other Code/ Specifications/ Standards

Declarer: This map was collect tassed as the datafeteration complexity to Monthly of Setan Development and Powerly Miscolars. SMOP has not verified the accuracy of information of the Nap. Secret: SMOPC, Inde

New earthquake zone map based on mean horizontal peak ground acceleration (PGA) values expected at the ground surface estimated by probabilistic seismic hazard assessment (PSHA) corresponding to a return period of 2,475 years. 20/40

Multi-Hazard Assessment under Independent Hazards

Independent hazards

Geophysical environment factors

Independent and Mutually Exclusive

Intersection \rightarrow Null-set

Proper methodology

New design codes and guidelines

Historical Overview of Multi-Hazard Scenario

General Framework for Multi-Hazard Scenario

1. Identify challenges

Interaction and inter-relation effects

2. Mitigate challenges

Structural safety on innovation scale

• Few recent examples of multi-hazard:

Personnel involved: Structural designers, codewriters, builders, developers, policy-makers, key stakeholders, etc.

- ✓ Cyclone and Flood Myanmar (Bay of Bengal), 2008
- ✓ Earthquake and Tsunami Sumatra, 2004 and Japan, 2011
- ✓ Earthquake and Fire Sendai, Japan, 2011
- ✓ Hurricane Sandy and Massive Storm USA, Caribbean, Canada, 2012
- ✓ Petrochemical Fire and Explosion Louisiana, USA, 2013
- ✓ Thunderstorm, Tornadoes, and Flash Floods USA, April 7th 2015

HYPOTHESIS

Multi-hazard (risk) analyses are **NOT** just the sum of single hazard (risk) analyses.

Assessment Methodology for Global MHA Scenario

Multi-Hazard Analysis (MHA) Scenario and Achieving Multi-Hazard Resilience of Bridge Infrastructure under Extreme Loading

Resilience (R**)** : capacity to withstand and recover from the effects of a hazard.

R =

- $Q(t) \rightarrow$ system functionality
- $t_{0\rm E} \rightarrow \text{time of occurrence of a hazard}$
- $T_{\rm RE} \rightarrow$ recovery time
- $T_{\rm LC} \rightarrow {\rm control time}$

Framework for generating timeline for earthquake and wind during design life of a structure

Timelines of earthquakes and winds generated through the proposed methodology

Life-Cycle Multi-Hazard Assessment

Determination of the study area, identification of the relevant hazards and acquisition of hazard information

Roy, T. and Matsagar V. "Multi-Hazard Analysis and Design Guidelines: Recommendations for Structure and Infrastructure Systems in the Indian Context", *Current Science*, Volume 121, Number 1, July 2021.

Probabilistic Assessment Methodology - Independent Hazards

Multi-Hazards: Wind and Earthquake

Comparison of FFT spectrum for typical earthquake and wind scenario:

- Overlapped frequency band showing multi-hazard dominance.
- Structure subjected to excitation within this overlapped band is vulnerable against multiple hazards.
- It becomes important to characterize the modal properties of the structure.

Probability of failure under two hazards

Random variable Joint probability of failure

29/40

Probabilistic Assessment Methodology - Cascading Hazards

POST-EARTHQUAKE FIRE (PEF) SCENARIO

Fragility surface showing combination of failure for IM1 and IM2

Bridge Portal Analysis:

Overall, the increase in the response is in the range of 40 % to 60 %, indicating significant reduction of fire resistance rating of the structure due to the cascading effect of PEF.

Fragility curve for the RC structure under post-earthquake fire scenario 30/40

EARTHQUAKE AND FIRE SCENARIO

Framework for assessment of the RC structures under INDEPENDENT site-specific earthquake and fire scenarios (i.e., uncorrelated events)

Pratik Bhaskar, Akshay Baheti, and Vasant Matsagar^{*}, "Service-Life Damage Assessment of a Reinforced Concrete Structure under Multi-Hazard Seismic and Wind Actions", Transactions of the Indian National Academy of Engineering, Springer, Volume 7, No. 3, pp. 1017-1031, 2022, https://doi.org/10.1007/s41403-022-00344-0

Continuous structural deterioration due to (1) carbonation and (2) chloride-induced corrosion in damaged reinforced concrete (RC) structure 32/40

Bridge Deck (Base) Isolation using Bearing (Seismic + Thermal + Wind)

Technical framework for optimal assessment of the structures under multiple hazard scenarios in entirety

Proposed generalized multi-hazard analysis and design technique for structures and infrastructure systems

Other Code/Specifications/Standards

NBC (2016)

- Member of National Building Code (NBC) committee for standardisation in the area of building construction norms in India by the Bureau of Indian Standards (BIS) →
- Condition of acting all extreme loading together in terms of 'Multi-Hazard Risk Concept' and 'Multi-Hazard Prone Area', in Sections 9.1 and 9.2, respectively.
- According to NBC, the commonly encountered hazards are:
- 1. Earthquake,
- 2. Cyclone,
- 3. Windstorm,
- 4. Floods,
- 5. Landslides,
- 6. Liquefaction of soils,
- 7. Extreme winds,
- 8. Cloud bursts, and
- 9. Failure of slopes.
- 1. Multi-Hazard Analysis and Design of Structures.
- 2. Prescriptive Approach.

Experience from the USA

AASHTO LRFD Design Limit State Equations $\phi R_n = \gamma Q_n$

Future Vision and Outlook	Future	Vision	and	Outlook	ζ
----------------------------------	--------	--------	-----	---------	---

Evolution of Traditional Structural Design Philosophies	 Working stress method (WSM) Ultimate load method (ULM) Limit state method (LSM)
Current State-of-the-Art in Structural Design	 Performance-based engineering (PBE) Risk-based structural design
Upcoming Trends in Structural Design Philosophies	 Multi-hazard risk-based structural design Service-life risk-based structural design

Codes/ Standards \rightarrow Course of Action

- Limit State Design of Structures.
- Performance-Based Design of Structures. •
- Prescriptive Approach → Multi-Hazard Protection of Structures. •

Roy, T., and Matsagar, V.A.*, "Multi-Hazard Analysis and Design of Structures: Status and Research **Trends**", *Structure and Infrastructure Engineering*, *Taylor & Francis*, Volume 19, Number 6, 2023.

Concluding Remarks

Conventional Structural Analysis and Design

Augmentation of multi-hazard analysis and design in the conventional design approach for structure and infrastructure systems

☑/40

Acknowledgements

MULTI-HAZARD PROTECTIVE STRUCTURES (MHPS) LABORATORY DEPARTMENT OF CIVIL ENGINEERING INDIAN INSTITUTE OF TECHNOLOGY (IIT) DELHI

rhank Y