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CORRELATION - STATS RELATIONSHIP BETWEEN TWO RANDOM VARIABLES

4

0

8

0

..

—
;'!
B
7,
Fhd
B
t-1

L]
N X
e o,
. G Ay
h o = At
AN T
,..-Flv...l.h..-r..
— O iy ..M._.
e,
- _1..“... &

ver,.f,. SAINT-GOBAIN

HIGH PERFORMANCE SOLUTIONS — CONSTRUCTION CHEMICALS © 2023

ACI FALL 2023 - BOSTON

2



CORRELATION DOES NOT IMPLY CAUSATION...
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Mozzarella vs # Pizza restaurants [R2=0.82]
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CORRELATION DOES NOT IMPLY CAUSATION...

L ]
Mozzarella vs # Pizza restaurants [R2=0.82] Mozzarella vs # PhD engineering [R2=0.80]
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Mozzarella per-capita consumption [Ibs]

CORRELATION DOES NOT IMPLY CAUSATION...

Mozzarella vs # Pizza restaurants [R2=0.82] Mozzarella vs # PhD engineering [R2=0.80] PhD engineering vs # Pizza restaurants [R2=0.69]
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CAUSAL MAPS - AWAY TO INTRODUCE THE CONCEPT OF CAUSATION

twincities.com

Arrows denote cause

- @hmk_c@ Two immediate points:

/ 1. Depends on your expertise (i.e. domain
@y_(}uarte@ knowledge)
_ \ 2. Highlights confounding variables

Football_dy@
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CAUSAL MAPS - AWAY TO INTRODUCE THE CONCEPT OF CAUSATION

twincities.com

Arrows denote cause

) @hwk_cD Two immediate points:

/ 1. Depends on your expertise (i.e. domain
@y_(}uarte@ knowledge)
= \ 2. Highlights confounding variables
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BENEFITS OF CAUSAL MAPS AND MODELS

ACTIVITY:
QUESTIONS:

EXAMPLES:

3. COUNTERFACTUALS

Imagining, Retrospection, Understanding

What if I had done ...2 Why?
(Was it X that caused Y? What if X had not
occurred? What if T had acted differently?)

Wias it the aspirin that stopped my headache?
Would Kennedy be alive if Oswald had not
killed him? What if T had not smoked for the
last 2 years?

ACTIVITY:
QUESTIONS:

EXAMPLES:

L

(2. INTERVENTION

Doing, Intervening

What if 1do ...? How?
(What would Y be if T do X?
How can I make Y happen?)

If T take aspirin, will my headache be cured?
What if we ban cigarettes?

ACTIVITY:

QUESTIONS:

ACI FALL 2023 - BOSTON

EXAMPLES:

—

(1. ASSOCIATION

Seeing, Observing

What if 1 see...?
(How are the variables related?
How would seeing X change my belief in Y?)

What does a symptom tell me about a disease?
What does a survey tell us about the
election results?

J

“The Book of Why,” J. Pearl - 2018

HIGH PERFORMANCE SOLUTIONS — CONSTRUCTION CHEMICALS © 2023

Briefly how it works:

Domain experts (YOU!) map out

|dentify the “estimand” i.e. what we're interested in estimating

Estimate the causal effect
o Via control of the flow of data

o Using “Do-Calculus” — i.e. set of rules for manipulating the flow

Refute the estimate

o Essentially validate your model

See, for example:
https://www.pywhy.org/dowhy/v0.8/getting_ started/intro.html

Y
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EXAMPLE PROBLEM STATEMENT: WHAT CAUSES “IDLE” TIME AT THE SITE?

Batch concrete

Arrive on Discharge Return to
sSite concrete plant

3
s

# de es

Time on site - w/manual testing, n = 13,616; over 30 min = 40%
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Time on site [min]

Reduction in billable idle time by 18%
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40

301

]
2
3 201

107

Time on site - w/Verifi, n = 158; over 30 min = 22%

Ok, so how might we do this in a traditional sense...?

TRUCK_CONGESTION RANDOM _JOB_SITE DELAYS

TIME_ON_SITE

SLUMP_ADJUSTMENTS

F Il - mn Essentially:
T - Is the truck ready to pour?

0

20

40 60 B0 100 120
Time on site [min]

- Is the contractor ready to pour?
- Is Murphy’s law in effect?
7 afe
verifi _.ol.
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EXAMPLE PROBLEM STATEMENT: WHAT CAUSES “IDLE” TIME AT THE SITE?

Leave Arrive on Discharge Return to
plant site concrete plant

Batch concrete

Processor, GPS
And cellular modem Temperature and Water and

e Hydraulic  drum speed sensor admixture
pressure nozzs
sensors r~ ==
: . 'ﬁ

SLUMP_ADJUSTMENTS TRUCK_CONGESTION

TIME_ON_SITE

RANDOM_JOB_SITE DELAYS

« A commercial loT measurement/management system is
used to feed the models

« Over 180 MM cubic yards have been generated through
these systems globally

 Billions of data points... slump, temperature, GPS, water
adds, admixture adds...

Integrated admixture tank
with flow valves and meters

T e fe
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EXAMPLE PROBLEM STATEMENT: WHAT CAUSES “IDLE” TIME AT THE SITE?

Arrive on Discharge Return to

Batch concrete site concrete plant

Let’s be a little more detailed...

CONTRACTOR w @VS_TARGET_@ RANDOM _JOB_SITE _DELAYS
@ INSTRUCTION_DISCHARGE TRUCK_CONGESTION

@ INSTRUCTION_ TRANSIT @ SLUMP_VS_TARGET_DISCHARE
\\ _ ]
—

TIME_ON_SITE
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A QUICK LOOK AT THE DATA
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SLUMP_VS TARGET_ DISCHARGE converted to
TRUE/FALSE
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Looking to see what causes TIME_ON_SITE
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WATER

TIME_ON_SITE
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TRADITIONAL METHODS o
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>
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Feature importance: Linear regression; [avg PWT = 58.9%] Feature importance: Random forest; [avg PWT = 61.9%)]
1.200e+7 0.6
1.000e+7 05
8.000e+6 0.4
6.000e+6 0.3
4.000e+6 0.2
2.000e+6 0.1
0.000e+0 t QI/ }( t Qw/ t C|J 0 Q} I\l T T
S & & & § & § & & $ &g & & &
O e & o o}? g o & X & s N3 O &
& Q & & & X & & F & & 8§
S $ @ A7 & S g o &
S o Q & & o Q ) o
'e] O é/ & /3/ Q / N G
*/ & {_/ <)
O <) & &' O N
& < o’ & & &
S v 4 E
‘fn {3 § I
& S ¢
3 1)
&’
verifi _ .ol
ACI FALL 2023 - BOSTON HIGH PERFORMANCE SOLUTIONS — CONSTRUCTION CHEMICALS © 2023 SAINT-GOBAIN



THE CAUSAL MAP

CONTRACTOR

@ INSTRUCTION_TRANSIT INSTRUCTION_DISCHARGE
SLUMP_VS_TARGET DISCHARGE

CONCRETE TEMPERATURE

SLUMP_VS_TARGET ARRIVAL

TRUCK_CONGESTION

verifi _ .ol
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APPLYING THE “DO-CALCULUS” AND FINDING “ARROW STRENGTH”

In other words, how much does each node contribute to the variance in a child node?

CONTRACTOR

= =

w @ CONCRETE TEMPERATURE INSTRUCTION DISCHARGE

SLUMP VS TARGET ARRIVAL SLUMP VS TARGET DISCHARGE

INSTRUCTION TEANSIT

91.05

T e fe
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APPLYING THE “DO-CALCULUS” AND FINDING “ARROW STRENGTH”

In other words, how much does each node contribute to the variance in a child node?

Com

16.11 21.31

w INSTRUCTION TRANSIT @ CONCRETE_TEMPERATURE INSTRIJ(TIDN_L}IS(‘@

S5LUMP VS TARGET ARRIVAL SLUMP VS TARGET DISCHARGE

e onsite
verifi _ il
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APPLYING THE “DO-CALCULUS” AND FINDING “ARROW STRENGTH”

In other words, how much does each node contribute to the variance in a child node?

CDNTM{'_TDR
w INSTRUCTION_TRANSIT LUNL RETE_TEMP ::m@ INS‘I'RUL"I'IDN_DISL‘H@

0,59 SLUMP VS TARGET _ARRIVAL " s SLUMP VS _TARGET _DISCHARGE

ne6l 21.65

e ox sire S
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APPLYING THE “DO-CALCULUS” AND FINDING “ARROW STRENGTH”

In other words, how much does each node contribute to the variance in a child node?

CONTRACTOR

@ ‘ PLANT
w INSTRUCTION TRANSIT @ CONCRETE TEMPERATURE

[ P 29.44 29,89

37.21 INSTRUCTION DISCHARGE

\

SLUMP VS TARGET DISCHARGE

SLUMP VS TARGET ARRIVAL

e on sime S
/\d ()
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APPLYING THE “DO-CALCULUS” AND FINDING “ARROW STRENGTH”

In other words, how much does each node contribute to the variance in a child node?

CONTRACTOR
38.53
m INSTRUCTION TRANSIT @ CONCRETE_TEMPERATURE INSTRUCTION DISCHARGE
SLUMP VS TARGET ARRIVAL SLUMP VS TARGET DISCHARGE
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INTRINSIC CAUSAL INFLUENCE (ISOLATING THE EFFECTS)

Intrinsic causal influence

Q
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DIGGING DEEPER - INTERVENTIONS

Time on site; n=19,067; avg=11.4, std=9.8 What if TRUCK_CONGESTION = 0?
n=853; avg=9.1, std=8.2
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DIGGING DEEPER - INTERVENTIONS

L ]
What if we only used contractor X? What if we only used contractor Y?
n=873; avg=10.8, std=8.1 n=970; avg=14.3, std=8.7
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