
Carbon-cement supercapacitors: A disruptive 
technology for renewable energy storage

Damian Stefaniuk*, Nicolas Chanut, James C. Weaver, Yang Shao-Horn, 

Admir Masic, and Franz-Josef Ulm

* Research Scientist, CSHub, MIT (dstefani@mit.edu)



The pace of the transition from fossil fuel-based economy 
to a renewable energy economy will strongly depend on 
the availability of bulk energy storage solutions.

Energy storage challenge

[1] http://www-materials.eng.cam.ac.uk

[2] https://www.greencarcongress.com/2022/05/20220506-epic.html

[3] https://www.amakella.com/from-fossil-fuel-to-renewable-energy/1111

[3] [3]

How to reduce the environmental footprint of concrete and address energy 
storage challenge?
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Near future: $200 per ton carbon tax [2] 

Environmental footprint of concrete



EC3, besides its natural load-bearing capacity, brings new high-impact 
functionalities into concrete
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[1] https://www.engineersdaily.com/

[2] The New York Times; Photographs by SCIEPRO and mikroman6, via Getty Images
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[1] https://www.polarisenergy.in/

[2] https://offgridworld.com/5-cutting-edge-off-grid-homes-modern-amenities/

[1]

[2]

Off-grid house

Solar cells

Inverter

Solar batteries

Solar 
charger

EC3 can reduce (or even replace) currently used batteries

Multifunctional concrete

EC3
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Previous efforts: 

Achieved functionalities: 

Heat conductivity & energy storage!

Optimized: 

nCB type and superplasticizer.

nCB* particles

+

Portland cement PNS-based SP Water

+ +

EC3

Publications:

Pellenqu et al. (2018-2020). Electron conducting carbon-based cement, method of making it as supercapacitator. Patent.

Soliman et al. (2020). Electric energy dissipation and electric tortuosity in electron conductive cement-based materials. Physical Review Materials.

SCALABILITY

*nCB – nano Carbon Black

The technology has already been developed but the scalability of EC3 still 
needs to be addressed
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Other 
clinker 
phases

CH

C-S-H + nCB

C-S-H

Aluminates

Raman Spectroscopy map and Raman spectra of different phases:

D-band G-band

Correlative EDS–Raman Spectroscopy allows to distinguish 
nCB from carbonated products
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Further analysis of nCB particles network reveals low- and high-density (LD & HD) nCB phases:

LD nCB HD nCB

*nCB – nano Carbon Black

Hydration of cement with water in the presence of carbon phase generate 
a space-filling volumetric wire
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Carbon black particles distribution at different length scales (EDS data):

A space-filling volumetric wire can be visible at different length scales
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Heat map 
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A linear scaling of 

mean chord length 

with phase 

concentration is 

indicative of a 

unique specific 
(texture) surface of 

LD and HD nCB 

phases:

Ongoing efforts:

FIB SEM/EDS

Imaging:

2D → 3D

Resolution

400 nm → 10 nm

*nCB – nano Carbon Black

Low- and high-density (concentration) nCB phases have a unique specific 
texture
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Schematic of the supercapacitor:

Hydration 

porosity for 

transport 

(electrolyte)

  

Carbon-cement 

composite for 

energy storage

(electrode) 

Supercapacitor testing cell:  
 

How EC3 works as a supercapacitor
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[1] CT scan by J. Perrin, Soleil  synchrotron Paris

[1]

Polished carbon-
cement samples

Polished carbon-
cement samples

Glassy fiber separator 

soaked in KCl 1M
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Rate-dependent capacitance scaled with ξ:

Classical dimensionless 

diffusion variable: 

Energy storage capacitance: 

Estimated capacitance: 20-220 Wh/m3

d – electrode thickness
ϕc ρc – nCB concentration

SBET – specific surface of nCB

sLD – texture specific surface 

t0 – charge time

γ D0 – fitted diffusion coefficient

W/C – water-to-cement ratio

45 m3 of EC3 is sufficient for an average need of a residential house 
(average volume of foundation)
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[1] Raza, W., Ali, F., Raza, N., Luo, Y., Kim, K. H., Yang, J., ... & Kwon, E. E. (2018). Recent advancements in supercapacitor technology. Nano Energy, 52, 441-473.

What is needed: 

• high diffusion coefficient,

• high ionic conductivity,

• negligible effect on the EC3, 

• relatively low cost.

“No perfect electrolyte has yet been 
developed” [1]

E
le

c
tr

o
ly

te
s

Aqueous Organic solvents Ionic liquids Gel-like

Potassium chloride (KCl)

Potassium hydroxide (KOH)

Sodium sulfate (Na2SO4)

Sulfuric acid (H2SO4)

Sodium hydroxide (NaOH)

Acetonitrile (ACN)

Propylene carbonate (PC)

Dimethyl sulfoxide (DMSO)

Ethylene carbonate (EC)

Tetrahydrofuran (THF)

[EMIM][Tf2N] 
(1-ethyl-3-methylimidazolium 

bis(trifluoromethanesulfonyl)imide)

[EMIM][BF4]

(1-ethyl-3-methylimidazolium 

tetrafluoroborate)

[BMIM][BF4]

(1-butyl-3-methylimidazolium 

tetrafluoroborate)

Ethylammonium nitrate (EAN)

Gel form of any liquid 

electrolyte, e.g.:

Gel form of KCl solution 

While we have several electrolytes to choose from, we are seeking to identify 
a cost-effective one with specific properties 
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An influence of the electrolyte concentration: 

• Higher molarity → higher ionic conductivity

• Higher molarity → lower diffusion coefficient

Aqueous vs. organic: 

• Organic → lower capacitance

• Organic → higher voltage window

Electrolyte concentration and its type highly affects the EC3 supercapacitor 
performance
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Proof of concept: lighting an LED with EC3
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1” (~2.5 cm)

ec3 
supercapacitor:

Functional carbon-cement supercapacitors (connected in series) charged by solar panels:



EC3 was successfully scaled up to 12V “battery” and to a mortar scale
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12V supercapacitor:            

200 mV/s

100 mV/s

50 mV/s

20 mV/s

EC3 scaled up from cement paste to mortar scale:



An influence of the number of 

charge-discharge cycles:

An influence of the hydration 

time:

An influence of the carbon 

black content (by mass):

EC3 supercapacitors show a great performance due to its long lifetime, 
resistance to aging, and low percolation threshold of nCB
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Energy buffer for renewables

Conclusions and perspectives

[1] Courtesy of Admir Masic and James Weaver

[2] https://offgridworld.com/5-cutting-edge-off-grid-homes-modern-amenities/

[3] https://www.dreamstime.com/stock-illustration-white-d-human-character-running-up-stairs-three-dimensional-stylized-image69269838

[2]

[1]

[1]

Future large-

scale 

applications

Off-grid houses

Smart charging roads

[3]

EC3 technology exhibits promising scalability, spanning voltage levels from 

1V to 12V and encompassing scales from cement paste to mortar. This 

versatility widens its range of potential applications, bringing us closer to 

the transition from a fossil fuel-based economy to renewables.
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Questions?
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Additional questions:

 Damian Stefaniuk (dstefani@mit.edu)

 MIT CSHub (cshub@mit.edu)

Photo by Andrew P. Laurent
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