

Carbon-cement supercapacitors: A disruptive technology for renewable energy storage

<u>Damian Stefaniuk</u>^{*}, Nicolas Chanut, James C. Weaver, Yang Shao-Horn, Admir Masic, and Franz-Josef Ulm

* Research Scientist, CSHub, MIT (dstefani@mit.edu)

How to reduce the environmental footprint of concrete and address energy storage challenge?

Near future: \$200 per ton carbon tax [2]

Energy storage challenge

The pace of the transition from fossil fuel-based economy to a renewable energy economy will strongly depend on the availability of bulk energy storage solutions.

[1] http://www-materials.eng.cam.ac.uk
[2] https://www.greencarcongress.com/2022/05/20220506-epic.html
[3] https://www.amakella.com/from-fossil-fuel-to-renewable-energy/1111

EC³, besides its natural load-bearing capacity, brings new high-impact functionalities into concrete

[1] https://www.engineersdaily.com/

[2] The New York Times; Photographs by SCIEPRO and mikroman6, via Getty Images

EC³ can reduce (or even replace) currently used batteries

[2] https://offgridworld.com/5-cutting-edge-off-grid-homes-modern-amenities/

The technology has already been developed but the scalability of EC³ still needs to be addressed

Previous efforts:

Achieved functionalities: Heat conductivity & energy storage! Optimized: nCB type and superplasticizer.

Publications:

*nCB – nano Carbon Black

Pellenqu *et al.* (2018-2020). Electron conducting carbon-based cement, method of making it as supercapacitator. Patent. Soliman *et al.* (2020). Electric energy dissipation and electric tortuosity in electron conductive cement-based materials. *Physical Review Materials*.

Correlative EDS–Raman Spectroscopy allows to distinguish nCB from carbonated products

Raman Spectroscopy map and Raman spectra of different phases:

Hydration of cement with water in the presence of carbon phase generate a space-filling volumetric wire

Further analysis of nCB particles network reveals low- and high-density (LD & HD) nCB phases:

A space-filling volumetric wire can be visible at different length scales

Carbon black particles distribution at different length scales (EDS data):

Low- and high-density (concentration) nCB phases have a unique specific texture

*nCB – nano Carbon Black

How EC³ works as a supercapacitor

Schematic of the supercapacitor:

CONCRETE AS "structural" SUPERCAPACITOR:

Carbon-cement composite for energy storage

Hydration porosity for transport (electrolyte)

Supercapacitor testing cell:

[1] CT scan by J. Perrin, Soleil synchrotron Paris

45 m³ of EC³ is sufficient for an average need of a residential house (average volume of foundation)

0.8

0.6

0.4

0.2

 10^{-3}

Normalized

 10^{-1}

Normalized Scan Rate, $\xi = u/u_0$

-PBX 10.1 (0.42) 0.25 cr

-PBX 16.8 (0.6) 0.25 cm

-PBX 22.4 (0.8) 0.26 cm

-PBX 22.4 (0.8) 0.18 cm

-PBX 22.4 (0.8) 1.00 cm

Vulcan 16 (0.8) 0.40 cm

-KB 12.8 (1.4) 0.34 cm

KB 12.8 (1.4) 0.60 cm

 $y = a + (1 - a)\operatorname{erfc}(\xi)$

 10^{-2}

95% Confidence Bounds

Classical dimensionless diffusion variable:

d – electrode thickness $\phi_{\rm c}\rho_{\rm c}$ – nCB concentration S_{BFT} – specific surface of nCB s_{iD} – texture specific surface t_0 – charge time γD_0 – fitted diffusion coefficient W/C – water-to-cement ratio

Estimated capacitance: 20-220 Wh/m³

 10^{1}

 10^{0}

While we have several electrolytes to choose from, we are seeking to identify a cost-effective one with specific properties

What is needed:

- high diffusion coefficient,
- high ionic conductivity,
- negligible effect on the EC³,
- relatively low cost.

"No perfect electrolyte has yet been developed" [1]

	Aqueous	Organic solvents	Ionic liquids	Gel-like
Electrolytes	Potassium chloride (KCl) Potassium hydroxide (KOH) Sodium sulfate (Na ₂ SO ₄) Sulfuric acid (H ₂ SO ₄) Sodium hydroxide (NaOH)	Acetonitrile (ACN) Propylene carbonate (PC) Dimethyl sulfoxide (DMSO) Ethylene carbonate (EC) Tetrahydrofuran (THF)	[EMIM] [Tf2N] (1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide) [EMIM] [BF4] (1-ethyl-3-methylimidazolium tetrafluoroborate) [BMIM] [BF4] (1-butyl-3-methylimidazolium tetrafluoroborate) Ethylammonium nitrate (EAN)	Gel form of any liquid electrolyte, e.g.: Gel form of KCI solution

[1] Raza, W., Ali, F., Raza, N., Luo, Y., Kim, K. H., Yang, J., ... & Kwon, E. E. (2018). Recent advancements in supercapacitor technology. Nano Energy, 52, 441-473.

Electrolyte concentration and its type highly affects the EC³ supercapacitor performance

An influence of the electrolyte concentration:

- Higher molarity \rightarrow higher ionic conductivity
- Higher molarity \rightarrow **lower** diffusion coefficient

Aqueous vs. organic:

- Organic \rightarrow **lower** capacitance
- Organic \rightarrow higher voltage window

Proof of concept: lighting an LED with EC³

Functional carbon-cement supercapacitors (connected in series) charged by solar panels:

EC³ was successfully scaled up to 12V "battery" and to a mortar scale

12V supercapacitor:

EC³ scaled up from cement paste to mortar scale:

EC³ supercapacitors show a great performance due to its long lifetime, resistance to aging, and low percolation threshold of nCB

An influence of the **number of** charge-discharge cycles:

An influence of the **hydration time**:

An influence of the **carbon black content** (by mass):

Conclusions and perspectives

EC³ technology exhibits promising scalability, spanning voltage levels from 1V to 12V and encompassing scales from cement paste to mortar. This versatility widens its range of potential applications, bringing us closer to the transition from a fossil fuel-based economy to renewables.

Smart charging roads

Off-grid houses

Energy buffer for renewables

[1] Courtesy of Admir Masic and James Weaver

[2] https://offgridworld.com/5-cutting-edge-off-grid-homes-modern-amenities/

[3] https://www.dreamstime.com/stock-illustration-white-d-human-character-running-up-stairs-three-dimensional-stylized-image69269838

Slide **17**

Questions?

Additional questions: **Damian Stefaniuk** (dstefani@mit.edu) **MIT CSHub** (cshub@mit.edu)

HARVARD UNIVERSITY

Photo by Andrew P. Laurent

Acknowledgments

This work was supported by the MIT Concrete Sustainability Hub with sponsorship provided by the Concrete Advancement Foundation.

