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Motivation

A radical change is needed:

Cut CO2 emission by 50% in 

the next 10 years (stay below 

temperature rise of 1.5 oC); 

reach net zero in 2050

IPCC 2021. 1.5oC report 

USA has joined over 120 countries in committing to be net-zero emission by 2050
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Does concrete meet social and environmental goals?

Eco-efficient Issues: Cement 

contributes up to 8% of global CO2 

emission

1 ton of cement leads to the emission of 900 kg CO2 

(CaCO3 decomposition and Fuel)

Monteiro, P., Miller, S. & Horvath, A. Nature 

Mater. 16, 698–699 (2017)

Durability issues: repair of deteriorated 

infrastructures costs $$$ billions

40% of bridges in US 

require rehabilitation 

costing ~ $28 billion 

annually
Negative entropy input

Functionality issues: 

concrete has no negative 

entropy input through matter or 

energy with external stimuli 

Smart materials are designed with properties 

that can be changed in a controlled fashion 

by external stimuli (stress, moisture, electric, 

chemical compounds
Han et al. 2017

https://www.researchgate.net/publication/profile/Baoguo-Han
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Reduce 
CO2 from 

clinker 
production 

Reduce 
clinker in 
cement

Reduce 
cement in 
concrete

Add 
functionality 

Reduce 
concrete 

in building

Automate

construction

Use 
concrete 

more 
efficiently

• Waste Fuels

• Efficient Plants

• Alternative raw 

materials 

• SCMs 

• Local materials

⎼ Natural materials

⎼ Waste materials

⎼ Nano materials

• Aggregate grading

• Appropriate mix 

design

• Use of admixtures

• Use fillers

RECYCLE• Ride of formwork 

(3D printing)

• Switch to robotic 

fabrication 

• Concrete design 

optimization 

• Structure design 

optimization

• Self sensing

• Self healing

• Conductivity

• CO2 capture

How can concrete be sustainable to 

meet social and environmental goals?
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Electron conducting carbon-based cement 

Pellenq et al., MIT-CNRS, United States 

Patent, Dec 2020

Electrically conductive

Self-heating

Energy storage 

(capacitors)

+ =

Nano-Carbon Black (nCB)

Composite

Low cost & high electrical conductivity

Capillary pores network of 

CSH: 95% connected...
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Chemical surfactants

Carboxymethyl cellulose (CMC)

Polycarboxylate (PCE)

CMC+PCE

Polynaphthalene (PNS)

What is the effect of nCB dispersion on 

mechanical and electrical conductivity? 

Physical 
Sonication



7

Mechanical and microstructural properties: multiscale 

engineering chemo–mechanical material characterization

— Conductivity 

— Mechanical & 

Microstructure properties

Tests:Variables: Cement paste with

✓ w/c : 0.42

✓ nCB vol. : 12.5%

Micro scale

Micro scratching 
• Fracture Toughness 

Micro-indentation 
• Hardness 

• Indentation Modulus  

Nano scale

Nano-indentation 
• Hardness 

• Indentation Modulus  

for L-CSH & H-CSH

Macro scale

Compressive 

strength 
ASTM C 109

— Mechanical & 

Microstructure properties

• Cohesion

• Friction coefficient

Fracture 

Energy

Fracture 

process zone Packing density
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Trade-off between strength and conductivity

Electrical Conductivity:
⎼ Enhanced by moderate PNS and 

CMC; high concentration prevents 

the formation of conductive nCB 

networks.

⎼ PCE's effect is neutral, indicating a 

lack of interaction with nCB 

particles.

⎼ CMC+PCE shows a balanced 

conductivity, suggesting an optimal 

nCB particle dispersion.

Macro-scale Mechanical Strength:
⎼ Improved with PNS due to uniform 

nCB distribution, contrary to the 

weakening effect of CMC.

⎼ PCE maintains/improves strength, 

indicating effective cement 

hydration and nCB integration.

PNS
CMC

PCE PCE+CMC
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Fracture analysis via scratch test – microscale: 

Progression of Fracture toughness and energy

⎼ nCB  dispersion using any dosage ➔ 

increases fracture toughness 

⎼ Improvement on fracture toughness is 

originated from crack deflection effect, 

which results from nCB inclusion in 

cement matrix

PNS CMC

PCE PCE+CMC



10

Examining fracture mechanisms through SEM of 

scratch groove

12.5% nCB volume fraction, 0.42 w/c, 0.35% PNS

Direction of the scratch

The tortuosity (non-planar geometry) of a crack path is visible along with crack surface. 
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Ductility: M/H, Fracture Processing Zone (Kc/H)2

▪ nCB inclusion ➔ increases ductility (M/H) and fracture process zone

▪ Plastic dissipation capacity is increased and hence FPZ becomes smaller

PNS CMC

PCE PCE+CMC

Indentation Modulus/Indentation Hardness (M/H): competition 

of plastic dissipation and elastic energy storage
FPZ of a material at the head of the crack tip where the stress 

decreases from the maximum value to the far-field stress.
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Evolution of friction coefficient and cohesion

• Using nCB with surfactants ➔ 

slightly boosts friction coefficient 

(due to filling capillary pores with 

nCB) ➔ enhances fracture 

toughness

• PNS significantly increases 

cohesion ➔ greater macro-scale 

strength, compared to other 

surfactants

Friction = f (f’c, Hardness) Cohesion = f (f’c, Friction)

PNS CMC

PCE PCE+CMC
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Effect of dispersion of nCB on Nanomechanical properties 

using Nanoindentation < 1μm

⎼ No dispersion of nCB decreases M and H of the C-S-H ➔ strength reduction

⎼ Over dispersion of nCB with PNS enhances M and H of the C-S-H ➔ Cohesion & macro-mechanical improvement 

Mixture 

with:

Indentation H (GPa) Indentation M (GPa) Indentation creep (GPa) Volume friction

Phase 

1

Phase 

2

Phase 

3

Phase 

4

Phase 

1

Phase 

2

Phase 

3

Phase 

4

Phase 

1

Phase 

2

Phase 

3

Phase 

4

Phase 

1

Phase 

2

Phase 

3

Phase 

4

Blane Cement 1.1±0.3 1.4±0.3 2.0±0.4 -- 32±4.3 37±6.8 44±6 -- 193±53 387±85 835±333 -- 61 24 12 --

No surfactant 0.7±0.3 1.4±0.4 2.3±0.5 5.8±2.8 19±4.5 28±5.4 44±7 77±19 148±48 319±65 698±205
2567±13

26
37 23 34 5.8

0.3%PNS 1.0±0.2 1.5±0.23 2.3±0.5 -- 25±4.4 37±4.4 52±11 -- 132±38 235±63 499±210 -- 54.5 30 14 --

1%PNS 1.5±0.4 2.0±0.69 3.1±0.9 -- 29±5.2 39±4.4 51±9 -- 353±96 537±184 754±283 -- 59 31 10 --

1%PCE 1.12±0.4 2.0±0.7 4.7±1.8 -- 30±6.4 45±9.6 89±30 -- 300±78 592±212
1565±77

4
-- 64 26 11 --

0.25%CMC 0.9±0.4 1.3±0.41 2.0±0.7 -- 23±5.3 34±5.2 50±10 -- 141±29 285±71 520±271 -- 59 30 12 --

1%PCE-CMC 1.2±0.4 1.9±0.7 4.7±1.8 -- 29±6.4 45±9.6 89±30 -- 300±78 592±212
1565±77

4
-- 63 30 8 --
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Microstructural analysis of nCB-Cement Composite 

using SEM and EDS

Without dispersing agent: nCB forms large agglomerations, hindering load transfer and affecting mechanical properties.

PCE, CMC inclusions: Fewer agglomerations, more uniform nCB distribution.

High PNS concentration: Best uniformity in nCB distribution, enhancing mechanical strength.`

 1 

 2 

 3 

(a) Non-dispersed 

carbon 

50 m 50 m 

 (c) PNS - low dispersion 

50 m 50 m 

(d) PNS-High dispersion 

50 m 50 m 

 1 

 2 

 3 

(b) PCE 

50 m 50 m 

 (f) CMC & PCE 

50 m 50 m 

(e) CMC 

50 m 50 m 
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Conclusions 

✓ Conductivity: Enhanced nCB dispersion via PNS and CMC boosts conductivity; 

excess dispersion reduces it. PCE has minimal effect.

✓ Strength: Direct correlation with nCB dispersion. PNS surfactant notably improves 

strength. No dispersion diminishes strength.

✓ Fracture Properties: nCB dispersion elevates toughness and ductility due to 

'crack deflection' and bridging forces from PCE/CMC.

✓ Friction & Cohesion: PNS and CMC increase both by enhancing nCB dispersion.

✓ Micromechanical: PNS dispersion uplifts C-S-H gel properties by 12-25%.

✓ Morphology: SEM/EDS analysis highlights surfactants' role. PNS optimizes 

mechanical strength but lowers conductivity.
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Next Step  

nCB's potential in concrete is transformative. By 

optimizing balance and delving into nCB surface 

functionality, we can pioneer a multifunctional 

concrete that excels in strength and conductivity.
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Total weight of bridge =  4 t 

o 361.825.3236 | c 857.248.2440
nancy.soliman@tamucc.edu

Nancy Soliman, PhD
Assistant Professor

6300 Ocean Dr., Corpus Christi, TX USA

College of Engineering-Civil Engineering

mailto:nancy.soliman@tamucc.edu
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Approach: Micro-scratching protocol

Fracture toughness (KC): describes the ability of a material to withstand presence of a crack when under stress

Penetration 

depth
Tangential force

Vertical force

Panorama image of  3 mm

FT: Tangential force

A: projected load 

bearing area

p: probe perimeter

Fracture toughness

Linear Elastic Fracture Mechanics methods

converges towards a constant 

CJ Hoover, F-J Ulm (2015)
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180 sec

Approach: Indentation protocol
Indentation technique: study small volumes of materials and probe their mechanical properties at the sub-micron scale

Microscale  (~ 100 µm) Nanoscale (~ 1 µm)

Oliver, W. C., & Pharr, G. M. Journal of materials research, (1), 3-20(2004).

Vandamme, M., & Ulm, F. J. Proceedings of the National Academy of Sciences,(26), 10552-10557(2009).
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