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Tablet

Display

Flowmeter

Air Content Sensor

Slump probe

In-transit monitoring system
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Real-time data measurement

• Drum direction and rotationnal speed

• Mixing turn count

• Volume of concrete

• Production status

• Temperature

• Air content

• Slump

• Water addition

Slump adjustment using water addition

Loading & mixing Transportation

Arrival on site & 

re-mixing Unloading
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Real-time data measurement

Around 2500 systems installed in 

North America

→ Big Data!

• Drum direction and rotationnal speed

• Mixing turn count

• Volume of concrete

• Production status

• Temperature

• Air content

• Slump

• Water addition



Five years project

Research project

Rheology, homogeneity and mixing completion, air content and 

density measurement,…

Is there an interest in employing machine learning methods for 

the use of data produced by the network of sensors?
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The cost of retempering

Slump Loss

Average concrete 

loads

Reference: Master Builders

45%

10 min

30$

Average time to test, 

retemper and retest

Average material and operational 

costs to retemper

Topic: Predict the evolution of slump during transportation



Topic: Predict the evolution of slump during transportation

The solution

Required slump at 

departure:

? inches
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Perspectives: 

Decision support and alert tool for concrete plant operators

Improved production automatisation

Slump Loss

Target slump at 

site:

X inches



Load volume

Concrete temperature

W/C

Age at departure

Outside temperature

Outside humidity

Slump at arrival

Travel time

Target slump at 

departure

Slump 
anticipation 

algorithm

Other (not considered) parameters that might have 

an effect: mix design, aggregate moisture,…

Popular machine learning model:
XGBoost
Neural Network (NN)
…
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The algorithm



Database and performance

1607 loads of 

concrete

9



Train dataset 

(75%)

Test dataset 

(25%)

Database and performance
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R2 = 0.81

It works!
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Awareness

And tools



Database and performance

1607 loads of 

concrete

2275 incomplete instances

(40%)

920 outliers

(16%)

828 instances with arrival slump 

greater than departure slump

(15%)

(29%)

Note: That was a proof of concept
12



Database and performance
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Train dataset 

(75%)

Test dataset 

(25%)

Train set: R2 = 0.82 Test set: R2 = 0.81

Using a popular machine learning model 
(XGBoost):

R2 = 0.81R2 = 0.81

Close and relatively high! 13



Why is it a good situation?

Two dimension representation of a multi dimension model

Input(s)

O
u

tp
u

t

Correlation between model and Test dataset: R2 = 0.81

Train data Test data Model

Correlation between model and Train dataset: R2 = 0.82
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Why is it a good situation?

Test dataset

Train dataset

Train data Test data Model

Input(s)
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0.81

Input(s)
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Correlation with:

0.5

0.5

0.98

0.81

Input(s)
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Underfitting Overfitting Balance
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Reverse engineering
‘Machine learning is like a black box’

→ Parametric study with two different models

Volume: 8 m3 – Concrete temperature at departure: 25ºC – Age at departure: 10 min 

– Slump at arrival: 150 mm (6 in.) – W/C: 0.45 – Outside humidity: 70%
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Reverse engineering
‘Machine learning is like a black box’

→ Parametric study with two different models
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Different models might yield different results

We still need the understanding of concrete science to develop useful models

Outside Temperature
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Conclusion

And be alert

Stay criticalLook for convincing results

And limited error

20

But…
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Thank you!

Pierre Siccardi, Ph.D.
psiccardi@commandalkon.com
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Appendix
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Real-time data measurement

• Drum direction and rotationnal speed

• Mixing turn count

• Volume of concrete

• Production status

• Temperature

• Slump

• Water addition

• Air content



The cost of retempering

Credit: Master Builders

Topic: Predict the evolution of slump during transportation

Perspectives: 

Decision support and alert tool for concrete plant operators

Improved production automatisation
24



The data pipeline

Topic: Predict the evolution of slump during transportation

Required slump at 

departure:

X.XX inches

e.g. Water or admixture addition 

algorithm

Slump 
anticipation 

algorithm

Target slump at departureProduction data

Upstream 
components

Downstream 
components

Weather conditions
Travel time
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Root Mean Square Error (RMSE) = 21 mm

Performance

‘For a slump of 85 mm (3.4 in.), the acceptable range of 
two results (d2s) is 28 mm (1.1 in.)’
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Using a popular machine learning model 
(XGBoost):

Train set: R2 = 0.82 Test set: R2 = 0.81

Error is acceptable!
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