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Background

« Current Reinforced Concrete (RC) bridge infrastructure is ,
i i i i Corrosion in Typical RC Bridge Piers
vuIneraI?I_e to chlo_rldg and sal_t in marine environments, (Mohammed Al Ani, 2015)
and de-icing application for highway bridges, and thus ~ e
experiences deterioration due to reinforcement corrosion.

« According to the USDOT FHWA, more than half of the
total bridge inventory in the United States are RC
bridges.

- Traditional configuration may lead to an inadequate
service-life if structures are not maintained properly
and/or adequately.

el i rE ~ . Corrosion in RC Bridge

- Annual maintenance cost of bridge corrosion is an
=== Piers and Pier Caps at
e Lakeshore BLVD.
| _

estimated 13.6 billion dollars (Azari et al., 2020).
- Another study by Yunovich et al. (2003) included indirect &k Crossing Yonge St. of

factors into the entire lifecycle cost, in which case the | ;’
cost increases up to a factor of 10.
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Background

- Previous studies proposed Concrete-Filled FRP Tubes (CFFT) to address the
needs for resilience against natural disasters and corrosion challenges.

- The FRP stay-in-place formwork comes with reduced construction costs, time,
and workload; provides enhanced structural capacity, and protects RC core
from corrosion.

«  One previous study was conducted by co-author Yilei Shi, etc. with Dr. Amir
Mirmiran (now Provost at UT, Tyler) at Florida International University (FIU) as
part of a multi-disciplinary and multi-university NSF-NEESR research project in
the last decade.

«  FIU’s study included cyclic and monotonic flexural tests of CFFT and RC
columns, as well as CFFT/RC bridge bents, among other tasks.

- The optimized bridge substructure system was later incorporated into a four-
span large-scale bridge tested on shake tables at University of Nevada, Reno

.. . - . UNR Four-Span Large-Scale
(UNR), by Dr. M. Saiid Saiidi (retired). Bridge Shake Table Tests

(Kavianipour 2013)
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Proposed New Configurations Stainless-Steel

Reinforcement
UHPC

- Question: although the previous system boasts significant improvement on ~ Core
seismic performance in capacity and ductility over conventional system, it
could still be subjected to corrosion by water intrusion through member joints.

FRP
. Shell

- New Proposed Member: a proposed new configuration of this study consists of
a UHPC core, FRP shell, & stainless-steel reinforcing bars, and is fully corrosion
free, which will extend service life and reduce maintenance costs.

FRP shell acts as the first guard against water and chloride intrusion.

UHPC core has a 12x lower rate of corrosion than conventional concrete and high
resistance to chloride penetration.

10% of stainless-steel composition is chromium, which protects the metal like a film.

- The novel corrosion resistance of this column will provide increased durability
and longevity for bridge infrastructure, reducing maintenance costs.
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Materials — FRP Shell Materials — UHPC Core

. AI filanlgsrlgt-wgund off-tlhe-shglf pr%duct of - Core diameter of 12.494 in
. o=t Py
geatf-gleum iLrl]deljgtrIJQ.war| y Hsed in e - Compressive Strength of 27 ksi
- The total thickness of fiberglass, resin and - Elastic Modulus of 8,250 ksi

is 0.22 in.
choXy 1S n « 2% steel fibers
« Tensile strength = 10.3 ksi _ _ _ _
- Mechanical properties provided by Steelike

« Flexural strength = 23 ksi

TYPICAL MATERIAL PROPERTIES

According to ASTM C1856 / C1856M except where noted otherwise

70°F (21°C) curing temp, 2% load of 0.5-inch x 0.008-inch (13mm x 0.2mm) steel fiber with 435 ksi
(3 GPa) tensile strength

Compressive Strength: 2 day =12 ksi (85 MPa)’
3 days = 14 ksi (94 MPa)
7 days = 16 ksi (108 MPa)

14 days 2 19 ksi (130 MPa)

28days | 222 ksi (150 MPa)

Sustained Post-Cracking Tensile 1.07 ksi (7.38 MPa) minimum

Strength (FHWA?) 1.50 ksi (10.34 MPa) average

Static Modulus of Elasticity 8,250 ksi (57 GPa)

Chloride lon Penetration (ASTM C1202) | 49 coulombs at 56 days

ke Flow (adjustable per project needs) 7-inch (18-cm) to 10-inch (25-cm) diameter
: Working Time As needed?®
FIU Large-Scale Bridge Pier Specimens with Set Time (minimum values) 75 minutes initial, 87 minutes final®
Various FRP Shells (Shi 2009) * Steelike® UHPC can be modified to reach 14 ksi compressive strength in as little as 12 hours

2 Publication FHWA-HRT-17-053 Tension Testing of Ultra-High Performance Concrete
3 Set times and working times can be customized according to project needs
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Materials — Stainless Steel R

- Grade 75, f, = 75 Ksi

- Reinforcement ratio of 1.5%
— 16 No. 3 bars
- A, =1.76in?

- Rebar is evenly spaced in a circular pattern with a
radius of 5.30 in.

* 10% of the composition is chromium, which protects
itself like a film.

einforcement

Table 4:

Examples of applications of different grades of SS rebars (un, unknown).

Type of SS Structure Location Date SL (years) Reference
304 Bridge on |-696 Detroit, MI, USA 1984 un www.nickelinstitute.org
304L Schaffhausen bridge River Rhine, Switzerland 199580 www.stainlesssteelrebar.org
304LN Guildhall East London 2000750 Bertolini et al., 2013
36 Underpass Newcastle, Tyneside, UK 1995un wwwi.nickelinstitute.org
3l6L Broadmeadow Bridge Dublin, Ireland 2003 un www.stainlesssteelrebar.org
316LN Gladstone Bridge Queensland, Australia un www.reval-stainless-steel.com
Bridge Ajax, Ontario, Canada 1998un www.nickelinstitute.org
Thorold Tunnel Ontario, Canada 2004 un www.nickelinstitute.org
21-00 Gateway Bridge South-east Queensland, Australia 201300 www.stainlesssteelrebar.org
Buddhist Temple Thailand 2013300 www.stainlesssteelrebar.org
Junction Vartan Stockholm, Sweden 2015un www.stainlesssteelrebar.org
22-05 Ramp for Garden State Parkway NJ, USA 1998un www.nickelinstitute.org
Haynes Inlet Slough Bridge OR, USA 2004120 www.stainlesssteelrebar.org
Belt Parkway Bridge Brooklyn, USA 2004100 www.nickelinstitute.org
Driscoll Bridge NI, USA 2004 un www.nickelinstitute.org
Siena Footbridge Siena, Italy 2006120 www.nickelinstitute.org
Stonecutters Bridge Hong Kong, China 2009120 www.stainlesssteelrebar.org
Sea wall construction Arabian Gulf 2009un www.nickelinstitute.org
Little Bay Bridge Newington, NH, USA 20Mun Gupta, 2016
Sakonnet River Bridge RI, USA 2012un wwwi.nickelinstitute.org
Hurdman Bridge Ontario, Canada 2014un www.stainlesssteelrebar.org
Bayonne Breakwater Bayonne, France 2014un www.stainlesssteelrebar.org
Burgoyne Bridge St. Catharine's, Ontario, Canada 2016un Gupta, 2016
23-04 Cameron Heights Dr. Bridge Edmonton, Alberta, Canada 2010un www.nickelinstitute.org
S. Saskatchewan River Bridge, Medicine Hat Alberta, Canada 20Mun www.nickelinstitute.org
Caminada Bay Bridge LA, USA 20Mun Gupta, 2016
Hastings Bridge MN, USA 2012700+ www.stainlesssteelrebar.org
Riverwalk Brisbane, Australia 2013100 www.stainlesssteelrebar.org
Allt Chonoglias Bridge Scotland, UK 2013120 www.stainlesssteelrebar.org
Coastal Protection Cromer, UK 201450 www.stainlesssteelrebar.org
Kenaston Overpas Winnipeg, Manitoba, Canada 20V4un www.nickelinstitute.org
Daniel Hoan Bridge Milwaukee, WI, USA 2014 un Gupta, 2016
Macau Bridge Hong Kong - Zhuhai - China 2016120 www stainlesssteelrebar.org
New Champlain Bridge Montreal, Canada 2016 un www.stainlesssteelrebar.org
XxM-28 Light rail transit Edmonton, Alberta, Canada 2012un Gupta, 2016
Osborne Bridge Winnipeg, Manitoba, Canada 2012un Gupta, 2016
Pulasky skyway Newark, Jersey City, USA 2014un Gupta, 2016
Kosciuszko Bridge New York City, USA 2019un Gupta, 2016

https://doi.org/10.1515/corrrev-2017-0088
(Lollini 2018)
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OpenSEES Simulation

- Open System for Earthquake Engineering Simulation, developed
by University of California, Berkeley

«  Four columns were modeled for both new and conventional
configurations to compare the capacity of both types of sections.

- Cyclic lateral loading with constant axial load were induced, with
increasing lateral displacement from 0.5 to 3.0 in over 6 cycles
with node displacement control.

- The columns were not tested to failure, but previous work found
that flexure is the most likely failure mode for long shear-span

columns.

- Slippage was neglected in this model and connection to footing is
assumed to be perfectly fixed.
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OpenSEES Simulation — Specimen Designation

Stainless-Steel
/Conventional

FRP-UHPC-SS iz orecpre "

e Stainless steel reinforcement Core

e RC core
FRP-RC-CS o FRP shell W/WT
e Grade 60 conventional steel reinforcement FRP
Shell

¢ UHPC column

UHPC-SS «No FRP Shell

e Stainless steel reinforcement

¢ RC column

RC-CS «No FRP Shell

e Grade 60 conventional steel reinforcement
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Force (kips)
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OpenSEES Simulation — Hysteretic Responses

Hysteretic Responses for Conventional Concrete and G60 Steel with or
Wit(;lout lg;/{P Sh{co;l
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Force-Deflection Hysteretic Responses

Response Envelope Curve
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Cyclic Simulation Results

- Overall Performance

FRP-UHPC-SS exhibits the best cyclic performance in initial stiffness, flexural strength, and energy dissipation
among all four columns.

- Effect of FRP Shell

The 108% increase in cyclic performance of FRP-UHPC-SS when compared with UHPC-SS matches very well with
the previous study of 104% performance increase of FRP-CS when compared with RC control specimen.

- Effect of UHPC Core

The increase of capacity due to the core material enhanced from RC to UHPC is not significant, with or without
FRP shell, when compared with capacity increase due to FRP shell. This is attributed to the fact that the columns
in this study are mainly in flexural control. The increase will obviously be significant when the columns are more
controlled by compression.

- Effect of Stainless-Steel Reinforcement

the increase of capacity enhanced from RC to UHPC with or without FRP shell is 17% and 14%, respectively. One
of the reasons for increased capacity may be due to the fact that stainless steel reinforcement for FRP-UHPC-SS is
Grade 75, whereas conventional RC reinforcement is Grade 60.
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Parametric Study: FRP Ratio Stainless-Steel

Reinforcement

UHPC
Core /
e FRP-UHPC-Stainless Steel
F-U-S-25 f .
ot = 0.500 in Varying
FRP
Shells

e FRP-UHPC-Stainless Steel
F-U-S-50 R

ot = 0.250 in

e FRP-UHPC-Stainless Steel
oD/t =75
ot = 0.167 in

e FRP-UHPC-Stainless Steel
F-U-S-100 B

et =0.125in
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Parametric Study: Steel Reinforcement Ratio

e FRP-UHPC-Stainless Steel

oS Tl S A€ 2E10) +1.5% volume - 16 No. 3 bars

e Grade 60 stainless steel

e FRP-UHPC-Stainless Steel

S Y € 2d510)  «3% volume - 8 No. 6 bars

e Grade 60 stainless steel

e FRP-UHPC-Stainless Steel

SO ESE Il SN/ € 2 /s ¢1.5% volume - 16 No. 3 bars

e Grade 75 stainless steel

e FRP-UHPC-Stainless Steel

US4 €2 /s) | 3% volume - 8 No. 6 bars

e Grade 75 stainless steel

Varying
Stainless-Steel
Reinforcement

Core N/

FRP
Shells
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OpenSEES Ground Motion Simulation
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Displacement Response Time History of FRP-UHPC-SS & FRP-RC-CS under Kahramanmaras Earthquake
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Conclusions

« The novel corrosion free member composed of an FRP shell and a UHPC core with stainless-steel
reinforcements generated the best seismic performance under simulated cyclic loading in terms of
initial stiffness, flexural strength, and energy dissipation, among all four columns.

- The significantly enhanced flexural capacity is mainly contributed by the FRP shell in this analytical
study. However, the UHPC core with Stainless-steel reinforcement is essential to constitute a
corrosion free structural member.

- Parametric study shows that the higher ratios of both FRP and steel reinforcement will both lead to
a better seismic performance under simulated cyclic loading. However, the optimized FRP and
reinforcement ratios need to be observed so that a desired flexural failure is ensured with
adequate ductility for the proposed novel corrosion free member. The optimized composition of
three materials may be better obtained through more rigorous parametric studies validated by
future experimental studies.

- Ground Motion Study reveals that earthquake response of the proposed new member outperforms
its conventional counterpart in both base shear and displacement responses.
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