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Concrete Durability & Alkali Silica Reaction Mitigation

Proposed Mechanisms for Improving
Concrete Durability by Fly Ashes
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J \
e |ndustry, National & State DOT
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Current Challenges: Fly Ash & Specifications

Increase in Supply

, . ) “alternative’ fly ash
4‘ Decrease in Fly Ash Production varieties

» Blended Coal Ash
URapid Rise of Natural gas

O Emission Standards requirements for coal fired power plants * Blend?q Fly As
»No New plants constructed after 2013 - Beneficiated Fly Ash
» Existing Plant Retirement  Ponded Fly Ash

+ Remediated Fly Ash

Continuous Changes in Fly Ash Composition

LChanges to Plant Operations (to meet emission standards)
Changes to Coal Burning Processes

QChanging Coal Type being burnt Decreasing Avalilability
N » “‘quality”, “traditional’ or
; “production” fly ash
Decreasing Usage Rate of Fly Ash | varieties (Class C & F)

* Fly Ash meeting ASTM

QFly Ash not meeting “traditional” ASTM Specifications e .
Specifications

»80% of unused fly as disposed as landfill (Lack of Storage Options)
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Concrete Durability & Alkali Silica Reaction Mitigation

Proposed Mechanisms for Improving

Concrete Durability by Fly Ashes
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Theory of Concrete Pore Solution

Objective: Develop innovative model to estimate pore solution chemistry of concrete mixes.

Chemical Screening Tool (CST) for Rapid Prediction of Pore Solution * A Soluble Alkali = A\ pore sol conc
Optimum Fly Ash Dosage for ASR Mitigation Chemistry * A\ Alkali binding = W pore sol conc
(Saraswatula et al., 2022; Mukhopadhyay et al., 2023)

Total Soluble Alkali Alkali Binding

\ 4

Bound Alkali
(released o degree of
reaction)

N

Readily Soluble Alkali Si02/Ca0O Ratio of

Ingredient (composition) Degree of reaction

(Early Ages)

\ 4 \ 4 \ 4 \ 4

[ CEM>SF> CFA>FFA } [ SF>FFA>CFA>CEM } [ CEM>SF>CFA>FFA }

|
|
I
|
|
|
I
! A
|
|
I
|
|
|
1

Total Soluble Alkali WV Ca/Siof CSH > A\ alkali binding
CEM (~ 75%) > SF (~70-75%) > C FA (50-60%) > F FA (30-50%) SF>FFA > CFA > CEM
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Develop Innovative Model to Predict Concrete Pore Solution Chemistry

> TTI Model-2: Prediction of pore solution concentration (PSC) of binary and ternary
concrete mixes containing fly ashes (FA) & silica fume (SF) at long-term hydration ages.

e Total alkali dissolution

| (Nﬂzﬂ)_ M;j | s fi 2 ratio of soluble to total alkali
. 2m, . i fi ! . S 750
E n f,l cm | Cement, Fly Ashes & SF 2 75% (
L |
Na* (mﬂl) N MMNa0
- w n e T ‘:
L [(E—Z,; kia;)+(XRagmcsy)|

BRI e Alkali Binding

~~.| * Rd = distribution ratio of alkali in
hydration product (Hong, et al., 1996)

* m_y, =2 mass and stochiometric
composition of CSH from hydration

reactions
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Current Approaches to Determine Long Term Pore Solution Chemistry

ACCURACY - RELIABILITY - COMPLEXITY >

GEMS Thermodynamic

NIST Model NIST + ASTM C 311 .
Parameter (Bentz et al., 2007) (Mukhopadhyay et al., 2019) MOde"mg
(Lothenbach., 2008)
Overall Approach Empirical Empirical Thermodynamic model
1c Extraction | ¢ 1hle Alkali ;gment & 75% of Bulk Alkali Alkali dissolution based on
. Contingent on Silica Fume . :
applied pressure from 75% of Bulk Alkali degree of reaction
2. Early ages ~7 daydngredients | Fly Ash (FA) = Available Alkali (AA, ASTM C 311) QXRD/ TGA/ SEM analysis
3. No standardizégé.
Zr‘g;;“rif g Alkali Binding v’ Silica Fume v’ Silica Fume (NIST Model) v
e'sp_lsécu or=m x Fly ashes % Fly ashes In Built CSHQ model

* Rapid approach

«  Improved accounting of soluble * Accurate & Reliable
» Rapid approach *  Reliability = accuracy in

C ¢ * High error & Low alka:!i from kly Ashes _ quantifying minerology &
omments AA ~ total soluble alkalis from FA degree of reaction inputs

reliability for Fly Ash . ) .
mixes C(,)ns,' der-att/on o etiath  Complex and not suited for
AT (B [P egeriis rapid implementation
e ASTM C 311 discontinued?? P P
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Significance of Available Alkali test (Currently, ASTM C 311)

> The Available Alkali test dates back to the 1940’s , developed at the US Bureau of Reclamation (Moran and
Gilliland 1950; Mielenz 1967).

> The test procedure was created to measure the rate of release of alkali from pozzolans.
— eventually adopted by ASTM (ASTM C 311) to estimate the amount of alkali in pozzolans that was “available” for
contributing to ASR
> Current C311-> 5g SCM + 2.5 g Ca(OH)2 + 10 ml water - 38%2°C for 28 days = Measure Na &K (ppm)

> Typical drawbacks of this test procedure well documented:
— Test takes too long to complete ; Poor agreement between labs ; Calibration standards do not match test samples ;
Alkali release continues past the 28-day curing period (Lee, 1996)
> Major Criticism:
— Lack of Correlation with ASTM C 1567 Mortar Bar Expansion Measurements

— “The available alkali content of the fly ash generally did not produce the best correlations to measured
expansions; this was especially true if one was allowed to change fly ash replacement level” (Source: Schlorholtz,
S. M. (2015). Alkali Content of Fly Ash — Measuring and Testing Strategies for Compliance)
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Summary of Data used for Machine Learning Model Development

X-Ray Diffraction

Soluble Alkali Measurements

Pore Solution

Supplemental data

] (QXRD) Extraction Data on FA reactivity
Dataset | Bulk Oxide \
(Summary) |Composition Na & K
P Amorphgus Content, Water So!uble Available Alkal Concontration TGA, XRD, Isothermal
Crystalline Content Alkali ASTM C 311 | (1 to 180 days extraction | calorimetry, others
& Reactive Crystalline% | ASTM C 114 (1to ays extraction Y, '
measurements)
Set- 1 v X X X v v 200
Set -2 v X v v X X 36
Set- 3 v v X v X v 194
Set -5 v v X X X v 57
Set -4 v v X X X X 74
Set —5* v v v v v v 53

*Experimental TTI Laboratory

A | T

e 400+ data points collected from literature+ experimental work at TTI
* Literature Compilation = Spanning ~ 40 years (1980 — 2020)
* Covering different aspects of alkali dissolution, reactivity, minerology & pore solution — FA & FA Mixes
* Fly Ash types —Class C, Class F, Blended Fly Ashes (Blended coal/blended ash)
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Evaluation of Available Alkali Test (ASTM C 311)

Distribution of Available to Total Alkali Distribution of Alkali Factor vs Type of Fly Ash
Class C Class F
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Evaluation of Available Alkali Test (ASTM C 311)
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Cement Hydration

Fly Ash Hydration

Silica Fume Hydration

C,S + 2H = 0.5C, ,S,Hy < + 0.5 CH
C,S +3H = 0.5C, ,5,H, 5 + 1.5 CH
1.5CH + S = C,5SH, 5
S+1.1CH+28H =C,,SHs,

Fan et al., 2015; Haha et al., 2010; Liao et al., 2019; Lothenbach et al., 2011; Ramanathan et al., 2019; Zeng et al., 2012)

= Texas A&M
< Transportation
Al institute

CIR

CENTER FOR
Infrastructure)
Renewal




Development of Innovate Model to Predict Concrete Pore Solution Chemistry

TTI Model-2 Research Approach

Experimental Machine

Study

Development of
TTI Model-2

Learning Model
Development

Validation Study

. . . e Bayesian ML Model to _
Available Alkali (AA) from oredict AA from FA e Combined Effect of

Fly Ashes (ASTM C 311 ;
y ( ) + 230 Data Points (1980- 1.5oluble Alkali from CEM & SF
* QXRD Measurements 2019) 2.Available Alkali from FA

. i 3.Alkali Binding b . CSH
GEMS Modelling . 75%/25% train/test ali Binding by pozz

e Extraction Measurements

e GEMS Thermodynamic
Modelling

Soon to be published
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Machine Learning Model — Our Approach

Current Research: Bayesian Monte Carlo Markov Chain (MCMC) Modelling Approach

JWhy Bayesian Approach ?
v’ Probabilistic Modelling
v’ Data is treated as random variables i.e. true distribution (kernel-density functions) opposed to point observations
v Uncertainty quantification into model parameters using Bayesian statistical inference.

JdWhy Markov Chain ?

v’ Pore Solution Concentration (dissolution)and extraction measurements = time dependent process
v’ State of a system at the current iteration step (t) is only dependent on the previous iteration step (t-1)

d How are new samples generated?
v Markov Chain with adaptive No U turn sampling (NUTS) algorithm.
v’ Samples are generated from a “proposed” posterior distribution of model parameters

(d Monte Carlo Simulations
v 100,000 loop cycles based on 1000 sets of alkali concentration from the posterior distributions of the model parameters
v" The model predictions were used to calculate 2.5th and 97.5th percentile values to obtain 95% prediction intervals.
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TTI Model Approach (Soluble Alkali Determination from Fly Ashes)

Challenges
> Literature extraction data is scarce (reliability & complexity)

Three prior steps were used calibrate certain parameters > Soluble Alkali dissolution vs Pore Solution Concentration
used in ML model development. (PSC) vs age:

— Soluble alkali increases with age
> Step 1: Water Soluble Alkali from Fly Ashes : Simplified

— PSCincreases up to 28 days but typically decreases
Regression Based Model P y ypically

beyond 28 days;

> Step 2: Thermodynamic Modeling to estimate “total”
soluble alkali contribution from ingredients into pore

solution (cross validation based on pore solution Conc of Na In Pore Solution (Class F Fly Ash mixes)
. 20% FA [1] 40% FA [2] 60% FA[2] —e—35% FA[3]
extraction data) 01500
. . . . . . 0l1600 1
> Step 3: Non-Linear Optimization to curve fit (time step . 01400 P
process) the to alkali dissolution in pore solution and 2 Jions )
estimate fitting parameters (from step 2) Z 0.0800 -
= 0.0600 [
E 0.0400 N Decrease ofalkali in PS (Binding>dissolution)
0.0200 Local Maxima Sfimction of flv ash composition & replacement level
0.0000
0 20 40 60 80 100 120 140 160 180
Days

1 - Shdffer et al., 2003 ; 2 - Shaffer et al., 2006; 3 — Weerdt et al., 2013
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Development of Innovate Model to Predict Concrete Pore Solution Chemistry

Major Findings & Results (TTI Model-2) Oxstinsion of AvaleblerTotal Akl ve FA Type

n of Se0F va FA Type

1. Machine learning (ML) model to predict
available alkalis from fly ashes

— Bayesian Markov Chain Monte Carlo (MCMC)

D
_—-""'"_FFFH

2. RESUItS from ML MOdeI Equation 4-12 - / go +

3. Validation study with experimental measurements

— Overall, MAE 2 9.2% ; Class F FA = 7.3%, Class C FA 2
10°1% nzzan l- . Best BIC fit
stdev : ormal(mu = 53.5898, sigma = 5.69807)
— Available Alkali Test (1s) = 15-20% (Schlorholtz, 2015) o 1l 07 = /-\g  — eworem
HDI97%| 6| 006 —_—
4. The ML model predictions = develop Bayesian linear o /
regression equation for incorporation into excel 004 \
based tool = 003
0.02
0.01 _/
. > & & 7
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Chapter 4: Development of Innovate Model to Predict Concrete Pore Solution Chemistry

Major Findings & Results (TTI Model-2)

1. TTI Model-2 PSC predictions for binary &
ternary mixes at long term hydration ages

TTIModel-2 vs. Extraction Measurements (PSC = [Na]+[K])
Fly Ash Mixes (Literature)
@Diamond 1981, 30%FA m Schafer 2004, 20%FA A Schafer 2004, 40%FA
. % Schafer 2004, 60%FA + Vollpracht et al., 2010, 40%FA ®Weerdt et al., 2011, 35% FA
2. TTI Model-2 PSC vs. GEMS Thermodynamic Deschnoretal, 013 504FA
Model 0.0
— Marginally higher for FA mixes (secondary 050 b
hydration products); model R2~ 77-87% 2 e
gﬂ.dﬂ .. _:‘-45,'
r: Ll
g 0.30 . ,.-::{,-5?“ '
3. TTI Model-2 PSC vs. Literature Extraction 020
Measurements o s
~ Fly Ash Mixes > MAE ~ 7.8% - 11.7% o . Extraction data (mollL) - e

Publication under progress
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Chapter 4: Development of Innovate Model to Predict Concrete Pore Solution Chemistry

ACCURACY - RELIABILITY - COMPLEXITY

GEMS Thermodynamic
Parameter NIST Model TTI Model-2 ey
Modelling
Model Approach to Predict . Mix of Thermodynamic model based on
Empirical kinetics, dissolution and

Pore Solution Empirical — Kinetic Model

precipitation reactions

0 i o .
soluble Alkali from Cement 75% of Bulk Alkali 75% of Bulk Alkali Alkali Dissolution based on
I dient QXRD/ TGA/ SEM analysis
el FIv Ash Empirical: Machine Learning Model for Soluble
v 75% of Bulk Alkali Alkali Estimation
v
Alkali Binding due to Fly Ash X Stoichiometry; Parameters refined .
Incorporation (& Methodology) using GEMS & Extraction Data In Built CSHQ model
Model Sensitivity v v
PSC Prediction . Model Sensitive to Model Highly Sensitive to
. . Cannot Distinguish o . s . S
At similar replacement level & bulk alkali Class C & F FIv Ash Mixes Composition, minerology and Composition & reaction kinetics of
% in Class C vs F Fly Ash Y Reactivity of fly ash fly ash
Rapid estimating tool Accurate & High Reliability
L Rapid estimating tool Easy to use but accuracy of model outputs is
Ease of Use & Reliability Low reliability for FA mixes Higher reliability for FA mixes contingent on quantification of
(compared to NIST model) minerology & reactivity parameters
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