Durability of Carbon Fiber Splay Anchors in Bond Critical, Externally Bonded CFRP under Hygrothermal Conditioning

Sophia Rupp¹, Jovan Tatar², and Niko Zawodny³

¹University of Delaware, Dept. of Civil & Environmental Engineering, Graduate Research Assistant ²University of Delaware, Dept. of Civil & Environmental Engineering, Associate Professor ³University of Delaware, Dept. of Civil & Environmental Engineering, Undergraduate Research Assistant

An ACI Center of Excellence for Nonmetallic Building Materials

Environmental Exposure

- Moisture in particular is detrimental to properties of epoxy constituent in composites
- Switch from cohesive failure to adhesive failure
- Decrease in interlaminar shear strength

Carbon Fiber Splay Anchors

- Prevent detachment of FRP from concrete substrate following debonding
- Increase strain utilization of CFRP
- Improve pseudoductility of strengthened specimen

Research Objectives

- Quantify hygrothermal (moisture & heat) conditioning on externally bonded (EB) anchored CFRP system durability
- Evaluate the effects of the selected accelerated conditioning protocol on epoxy and CFRP composite

Conditioning Protocol

- Accelerated conditioning protocol (ACP)—3000-hr. water immersion at 50 °C per ACI 440.9R
- Unconditioned control group kept in standard laboratory conditions (SLC)

Materials

- 7,200 (SLC) and 9,000 (ACP) psi concrete
- 40% cement, 60% slag replacement to minimize substrate degradation
- 5.5% air-entrainment for better adhesive-concrete mechanical interlocking
- 11.6 $\frac{oz}{yd^2}$ (393 $\frac{g}{m^2}$) unidirectional carbon fiber
- Low viscosity epoxy used as substrate primer and fiber saturant
- Putty epoxy mixed with 5.4 wt% of silica fume

Three-point bending test

Methodology

Differential Scanning Calorimetry (DSC)

6

Tensile Tests

Test Variables

Conditioning Protocol	Bonded vs. Unbonded CFRP	Anchor Diameter - AMR
Standard Laboratory		1/4 in. – 0.625
Conditions (SLC)	Bonded - B	
		3/8 in 1.375
Accelerated Conditioning Protocol (ACP) Immersion in 50°C potable	Unbonded - UB	
		1/2 in. – 2.50
water for 3000 hours		

Fabrication of Small-Scale Beams

8

Drilling and chamfering anchor holes

Rounding corners to 1/2 in. radius

Introduce Notch

Sandblasting

Fabrication of Small-Scale Beams

9

OR Teflon tape

Results – Constituent Tests

CFRP Coupons

Property	SLC	АСР	% Change
Tensile Modulus (Gpa)	97.6 ± 9.4	89.1 ± 4.3	-8.8
Tensile Strength (Mpa)	1484 ± 97	1252 ± 67	-16
Elongation (%)	1.53 ± 0.2	1.41 ± 0.1	-7.8

Results – Constituent Tests

Epoxy Dogbones

Property	SLC	ACP	% Change
Tensile Modulus (Mpa)	2,928 ± 11.8	2,316 ± 45.4	-21
Tensile Strength (Mpa)	46.7 ± 3.72	60.0 ± 2.38	+28.5
Elongation (%)	1.71 <u>+</u> 0.167	1.94 ± 0.118 ¹	+13.5

¹ Elongation at yield

Epoxy & Putty DSC

Results - Beam Behavior

Results – Beam Tests

Results – Failure Modes

1/4 in. - 0.625 AMR

3/8 in. and 1/2 in. – 1.375 and 2.50 AMR

Conclusions

- Anchored SLC-UB beams demonstrated 30-40% lower capacity compared to corresponding anchored SLC-B beams
- 1/4 in. anchor groups demonstrated greatest susceptibility to conditioning:
 - 24% decrease in P_{Ult} in ACP bonded group
 - 16% decrease in P_{Ult} in ACP unbonded group
 - Anchor efficiency is limited in 1/4 in. anchor group following ACP
- 3/8 in. and 1/2 in. anchor groups attained strip fracture with no capacity loss while 1/4 in. anchors failed primarily by anchor rupture

Sophia Rupp, EIT Master's Student, Structural Engineering (University of Delaware) Design Engineer, Fyfe FRP, LLC.

srupp@udel.edu

srupp@cs-nri.com

