SELECTING THE APPROPRIATE QUALITY CONTROL METHOD

FOR 3D CONCRETE PRINTING: A FIRST GUIDELINE

Dr. Atta Ur Rehman

CORAL Lab, Department of Civil & Environmental Engineering Yonsei University, Seoul, South Korea

Contents

- 1. Introduction
- 2. Structural build-up
- 3. Construction site requirements
- 4. Experimental tests
- 5. Results and Discussion
- 6. Conclusion

3D printing of a tree stump at CORAL

American Concrete Institute

Introduction

Quality Control of 3DCP:

(i) ensuring the consistent quality of fresh concrete produced and delivered to the nozzle
(ii) ensuring the consistent structural build-up of printable concrete
(iii) maintaining the print quality and intended geometry of extruded layers
(iv) quality assurance of hardened-printed concrete

Development of QC tools is necessary for communication between stake holders in 3DCP construction and dissemination of R& D

Structural build-up

- Fresh printable concrete hardens with the time
- This transition is due to physical interaction between concrete ingredients and binder hydration

Importance:

- It governs buildability (number of printable layers) and achievable freedom of design
- Other influencing parameters: print geometry, printing process parameters, environmental factors, printer characteristics, etc.

Structural build-up

- Structural build-up of concrete can be felt by touching and texture
- But these sensory evaluations are highly subjective and qualitative descriptions
- Hence structural build-up needs to be defined in terms of physical numbers and units for ensuring quality control, easy communication and transparent record keeping

Structural build-up

- Conventional concrete construction technology is more concerned with the structural build-up at the scale of hours (setting time of concrete for formwork removal)
- In 3D concrete printing technology, structural build-up needs to be assessed at the scale of minutes for deciding the vertical construction rate
- Figure (right side) illustrates the stress growth at the bottom layer due to printing of next layers.
- These stresses should not exceed the evolving intrinsic shear strength/green strength/ stiffness of bottom layers
- Hence very sensitive instruments are needed which measure the structural build-up at the resolution of minutes

Construction site requirements from the testing tool

- Sensitive to structural build-up
- Highly portable
- Cost effective test method
- Automated test or minimum required personnel
- Minimum material requirement for testing
- Rugged instrument
- Minimum post data processing, etc.

Experimental tests

- Hand vane a)
- Rotational rheometer b)
- Uniaxial unconfined **C**) compressive strength (UUCT)
- Squeeze flow test d)
- Slow penetration test e) (SPT)
- Ultrasonic pulse **f**) velocity
- Slump **g**)
- Flow table h)

(c) UUCT

(g) Slump test

(d) Squeeze flow test

(h) Flow table test

(e) SPT

Mix composition - mass proportions with respect to the binder weight.

Binder ^a	nder ^a Sand		Water reducer
1	1.38	0.26	0.02

^a OPC-I: fly ash: silica fume = 0.7 : 0.2: 0.1.

(f) UPV

Some points to consider:

- Sensitivity (Δ Y): Maximum value minimum value
- Noise in instrument results: data fluctuation
- Coefficient of determination (*R*²) measures the variation of collected data
 with respect to a fitting curve but it does not measure the instrument
 sensitivity (instrument #4 vs instrument # 2)
- Higher sensitivity is preferred from the perspective of sensor and test performance, but a simple comparison based on sensitivity is not reasonable as an instrument with high sensitivity and high noise will have poor performance
- New performance indicator needs to be defined for evaluating the potential of candidate tests for capturing the structural build-up

Response of four instruments (#1, #2, #3 and #4) to the structural buildup

Some points to consider:

For a more accurate and confident determination of the concrete quality at a certain instant, the instrument output should be consistent, and the amount of deviation in the measurement results should be minimized while the sensitivity should be maximized.

Performance index = $\frac{\text{Sensitivity}}{2 * \text{standard deviation}} = \frac{\text{Maximum value} - \text{Minimum value}}{2 * \text{standard deviation}}$ = $\frac{\Delta Y}{2\sigma}$

American Concrete Institute

Response of four instruments (#1, #2, #3 and #4) to the structural buildup

Characterization method	Equation
Hand vane test – yield stress (kPa)	$\tau_{\rm H}=0.073t+1.838,R^2=0.93$
Rotational rheometer – yield stress (kPa)	$\tau_R = 0.062t + 1.82, R^2 = 0.94$
UUCT – compressive strength (kPa)	$f_{UUCT} = 0.190t + 6.95, R^2 = 0.84$
UUCT – stiffness/Young's modulus (kPa)	$E_{UUCT} = 3.436t + 26.55, R^2 =$
	0.74
Squeeze flow test – compressive strength/green	$f_{SQ} = 0.465t + 8.119, R^2 = 0.79,$
strength (kPa)	t < 30
	$f_{SQ} = 1.479t - 18.842, R^2 = 0.94,$
	t > 30
Slow penetration test – yield stress (kPa)	$\tau_{SPT} = 32.428 \ln(x) - 36.713, R^2 =$
	0.98, t > 4
Ultrasonic pulse velocity (m/s)	$V = 0.22t + 20.87, R^2 = 0.99$
Slump test – yield stress (kPa)	$\tau_{S} = 0.007t + 2.46, R^{2} = 0.68$
Flow table test – yield stress (kPa)	$\tau_{\rm F} = 0.014t + 0.85, {\rm R}^2 = 0.75$

Here, t represents the time,

Coefficient of t represents the structuration build-up by the corresponding instrument

Performance index	Sensitivity	Maximum value – Minimum value	ΔY
	2 * standard deviation	2 * standard deviation	$\frac{1}{2\sigma}$

Instrument	Performance index
Squeeze flow test-green strength (kPa)	11.35
Slow penetration test (kPa)	8.45
Hand vane test (kPa)	6.79
Rheometer (kPa)	6.11
UUCT-green strength (kPa)	5.49
UUCT-stiffness (kPa)	4.08
Flow table (mm)	2.7
Slump test (cm)	2.2
UPV (m/s)	2.06

Nomogram for quality control

- Nomogram can supplement the premix technical sheet for customers.
- Customers can use it to verify premix performance and quality.
- Site Engineers can use nomograms to ensure specified rheological performance in concrete production.

Nomogram for quality control

Summary

Test name	Sensitivity/Performa nce index	Portability	Price	Required personnel	Material for one test specimen	Ruggedness	Category of test nature
Hand vane	Good	Handy	Economical	1	2.5 liters	Torque sensor- low, Torque wrench meter-good	Offline, discrete
Rheometer	Good	Inconvenient	Expensive	1	20 liters (dependent on rheometer type)	Average	Offline, discrete
UUCT	Good	Inconvenient	Expensive	1-2	0.2 liter	Good	Offline, discrete
Squeeze flow test	Better	Inconvenient	Expensive	1-2	0.1 liter	Good	Offline, discrete
Slow penetration test	Better	Inconvenient	Expensive	1	0.9 liter	Good	Offline, continuous
UPV	Poor	Average	Expensive	1	0.1 liter	Transducers (low)	Offline, continuous
Slump mold	Poor	Handy	Economical	2	6 liters	Better	Offline, discrete
Flow table test	Poor	Handy	Economical	1	0.3 liter	Better	Offline, discrete

Additional details

Research paper: Recommendations for quality control in industrial 3D concrete printing construction with mono-component concrete: A critical evaluation of ten test methods and the introduction of the performance index. Developments in the Built Environment, 2023

Limitations of current tests

- Manual
- Concrete used in these tests does not represent the real-3D printed concrete layers
- None of single of these instruments can capture all the important rheological properties: shear stress, green strength, stiffness

Limitations of current tests

- Manual
- Concrete used in these tests does not represent the real-3D printed concrete layers
- None of single of these instruments can capture all the important rheological properties: shear stress, green strength, stiffness

Limitations of current tests

Towards Full Automation in 3D Concrete Printing Construction: Development of an Automated and Inline Test Method for In-situ Assessment of Structural Build-up and Quality of Concrete, Developments in Built Environment (under review) Atta Ur Rehman, Ik-Gyeom Kim, Jung-Hoon Kim*

American Concrete Institute

Supervisor: Prof. Jung-Hoon Kim

Funding: National Research Foundation (NRF) Korea under Grant No. NRF-2021R1A2C2013522 and 2021R1I1A1A01050267

Thank you

