Enhancing the Performance of Fiber-Reinforced Concrete by Using Two-Stage Mixing Approach

Onur Ozturk, Cornell University Nilufer Ozyurt, Bogazici University

Background Use of Discrete Macro Fibers

- The use of fibers can be a way to improve sustainability of construction projects.
 - >Improving mechanical performance.
 - ➢Improving durability.
 - ➢ Reducing the material use.
- Quality of the fiber-cementitious matrix interface has a considerable impact on the fiber reinforced concrete performance.

Polypropylene Fibers

Steel Fibers

Tam, V. W., Gao, X. F., & Tam, C. M. (2005). Microstructural analysis of recycled aggregate concrete produced from two-stage mixing approach. *Cement and concrete research*, *35*(6), 1195-1203.

(i) normal mixing approach and (ii) two-stage mixing approach.

Tam, V. W., Gao, X. F., & Tam, C. M. (2005). Microstructural analysis of recycled aggregate concrete produced from two-stage mixing approach. *Cement and concrete research*, *35*(6), 1195-1203.

Tam, V. W., Gao, X. F., & Tam, C. M. (2005). Microstructural analysis of recycled aggregate concrete produced from two-stage mixing approach. *Cement and concrete research*, *35*(6), 1195-1203.

• Following studies:

Different recycled aggregate types
Supplementary cementitious materials
Modified mixing methods
etc.

Objective

Two-stage mixing approach has been implemented to improve the interface between the fibers and cementitious matrix.

GOAL: To fill the notches and coat the fibers with a cementitious matrix tailored to improve the pull - out resistance of fibers.

Embossed Polypropylene Fibers

Evaluation of the Effectiveness

Mixtures, Specimens& Tests

		SF-0-Std	SF-2-Std	SF-4-Std	
Materials	Control	&	&	&	
		SF-0-Mod	SF-2-Mod	SF-4-Mod	
Cement	350.0	350.0	343.0	336.0	
Silica Fume	-	-	7.0	14.0	
CSt: No I	542.3	537.2	536.7	535.9	
CSt: No II	451	446.8	446.4	445.7	
Crushed Sand	634.6	628.6	628.0	627.0	
Natural Sand	180.8	179.1	178.9	178.7	
Water	210.0	210.0	210.0	210.0	
Superplasticiser	1.1	1.4	1.5	1.6	
PP Fiber	-	4.55	4.55	4.55	

PP Fiber = 0.5%vol.

Specimens

- 5 Cylinders (10x20 cm)
- 5 Beams (10x10x35 cm)

<u>Tests</u>

- Modulus of Elasticity (ASTM C469)
- Compressive Strength (ASTM C39)
- 4 Point Bending Test (ASTM C1609)

AIM: To fill the notches and coat the fibers with a cementitious matrix tailored to improve the pull - out resistance of fibers.

mix

mix

Test Results

Compressive Strength, Modulus of Elasticity, and Flexural Performance

Blue Dashed Lines: Standard Mixing Red Continuous Lines: Modified Mixing

Test Results Flexural Performance

RFSR = RFS / MOR

<u>Modified Mixing Approach</u> --> 30% increase in RFSR

Test Results Microstructural Analyses

Overview

Analyses **Pavement Structural Design**

Traffic Spectrum

(ACPA – StreetPave / Major Arterial)

Traffic, Environment & Soil Parameters			Single Axle Load (kN)	Frequency (%)	Tandem Axle Load (kN)	Frequency (%)
Design Life (year)						
Annual Daily Truck Traffic (ADTT)	1000		151.2	0.10	266.9	0.15
Annual Growth Rate (%)	2		142.3	0.29	249.1	0.28
Traffic in the Dominant Direction (%)	50		133.4	0.35	231.3	0.46
Day Time Traffic (%)	50		124.5	0.95	213.5	0.79
Night Time Traffic (%)	50		115.6	1.88	195.7	0.91
Temperature Differential (Day) (°C)	10		106.8	2.22	177.9	5.28
Temperature Differential (Day) (*C)	10		97.9	5.16	160.1	20.31
Temperature Differential (Day) (°C)	10		89.0	22.28	142.3	28.45
Modulus of (Subgrade + Base) Reaction (MPa/m)	100		80.1	36.37	124.5	24.88
	, 100		71.2	30.41	106.8	18.48

Design Method: Indian Road Congress (IRC) Method (IRC 58, 2015)

MOR' = MOR * (1 + residual flexural strength ratio)

Roesler, J. R., Bordelon, A. C., Ioannides, A., Beyer, M., & Wang, D. (2008). Design and concrete material requirements for ultra-thin whitetopping. American Concrete Pavement Association. (2011). ACPA StreetPave Software.

Analyses Pavement Structural Design

Mixture Name	Density (t/m³)	MOE (MPa)	MOR (MPa)	RFS (MPa) (2mm)	MOR' (MPa)	Characteristic MOR' (90 days) (MPa)	Required Thickness (cm)	Thickness Reduction (%)	Thickness Reduction (%)
Control	2.37	23.9	5.96	-	5.96	4.59	22.9	-	-
SF-0-Std	2.36	23.7	5.61	0.83	6.44	4.96	21.7	5.2	-
SF-0-Mod	2.36	25.3	5.67	1.05	6.72	5.17	20.4	10.9	6.0
SF-2-Std	2.36	25.6	5.62	0.86	6.48	4.99	20.8	9.2	-
SF-2-Mod	2.36	25.0	5.73	1.38	7.11	5.47	19.7	14.0	5.3
SF-4-Std	2.35	24.0	6.05	1.16	7.21	5.55	19.9	13.1	-
SF-4-Mod	2.35	24.8	6.30	1.34	7.64	5.88	18.8	17.9	5.5

Cost and CE

Analyses Cost and Environmental Impact

Parameter	Cost (\$ / kg product)	CO ₂ emission (kg CO ₂ - eq / kg product)		
Cement	0.067 *	0.707 *		
SF	0.400 *	0.024 ****		
CSt: No I	0.006 *	0.004 **		
CSt: No II	0.006 *	0.004 **		
CS	0.006 *	0.004 **		
NS	0.009 *	0.009 **		
Water	0.001 *	0.0003 **		
SP	0.600 *	1.880 **		
PPF	6.000 *	3.430 ***		
Steel Mesh	1.000 *	1.990 **		

* Local suppliers (Turkey) (in July, 2022)

** Hammond and Jones (2008).

*** Korol et al. (2020).

**** Thilakarathna et al. (2020)

Unit Concrete Volume > Unit Pavement Area

Modified Mixing Methodology

--> 6% Decrease in Cost and CO₂ emission

Construction and Building Materials 409 (2023) 133870

Implementation of two-stage mixing approach to improve the performance of fiber reinforced concrete for sustainable construction

Onur Ozturk^{*}, Nilufer Ozyurt

https://authors.elsevier.com/a/1hzTN3O1E1UWdg

Thank you!

oo59@cornell.edu

Background Use of Discrete Macro Fibers

- Despite the increasing cost, fibers can reduce the environmental impact by reducing the structural dimensions (pavement thickness).
 - > Type and amount of the fibers should be selected carefully.

Ozturk, O., & Ozyurt, N. (2022). Sustainability and cost-effectiveness of steel and polypropylene fiber reinforced concrete pavement mixtures. *Journal of Cleaner Production*, *363*, 132582.

