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THE IMPORTANCE OF FEATURE ENGINEERING IN APPLIED MACHINE LEARNING

 Features are variables used to define a system and 
build models to predict its properties

 In building predictive models, we seek features that:

 Provide accurate predictions with a sparse feature set

 Generalize across the response surface to make new 
predictions that are accurate and interesting

 For cement and concrete, what are good 
features?
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“Coming up with features is 

difficult, time-consuming, 

requires expert knowledge. 

'Applied machine learning' is 

basically feature engineering.” 

— Prof. Andrew Ng, Stanford U.



EXAMPLE: CONCRETE STRENGTH PREDICTIONS PARAMETERIZED BY COMPOSITION

 Compositional models relate properties to the 
amounts of specified components

 Parameterized by “What is it?’

 The Yeh datasets of compressive strength contain 
~1000 concrete samples with eight compositional 
variables

 w/c, fly ash, coarse aggregate, fine aggregate, air-
entraining agent, water-reducing agent, air, cementitious

 Sant, Bauchy and co-workers performed a benchmark 
machine learning study on the Yeh dataset

 Accuracy is moderate

 Parity plot R2 = 0.591

 Feature selection is not used in compositional models

 What are the prospects for models based on 50 
samples?
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Sant & co. Cement Concr. Res. (2019)

Sant, Bauchy & co. ACI Mater. J. (2020)
Yeh. Cem. Concr. Res. (1998)



EXPLICIT HIDDEN VARIABLE MODELS OF COMPLEX SYSTEMS

 Hidden (latent) variables are not controlled directly but 
hypothesized to govern the properties of complex 
systems

 We can estimate their values using additional 
experiments, mathematical modeling, domain knowledge

 Why build hidden variable models?

 More accurate for small datasets

 Meaningful feature selection

 Simpler response surfaces

 More interpretable

 More generalizable

 Challenges with latent variable models:

 Require additional data, empirical models, meaningful domain 
knowledge, etc.

 Bias
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OUR GOALS IN MACHINE LEARNING OF CEMENTITIOUS SYSTEMS

 Accurate predictions of workability, set time, strength 

development, and durability for complex mixes

 Accurate predictions from small datasets

 Simultaneous optimization of performance metrics for a 

given set of constituents

 A tool for technological innovation and mix design

 Mechanistic understanding

 Accurate uncertainty estimates
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BAYESIAN MODELS

 Bayes’ theorem provides a relationship 

between evidence (data) and a hypothesis 

(model)

 Prior distribution represents expectations 

of the range of results (confidence intervals) 

without any observations

 The posterior distribution represents 

updated confidence intervals, which are 

narrower around data points but revert to 

the prior at values far from these
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BAYESIAN MODELS OF ULTRA-HIGH PERFORMANCE CONCRETE

 UHPC has a compressive strength >150 MPa

 Complex formulations utilize a diversity of 

supplementary cementitious materials and fibers

 How do predictions compare when the model is 

parameterized by compositional variables (bottom 

later) vs. latent variables (middle layer)?
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UHPC TRAINING DATA

 Compressive strength results from ~100 UHPC 

blends were taken from literature sources to train a 

Bayesian machine learning model

 Particles were only parameterized by size

 Fibers were not differentiated and only represented by 

loading
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Data Source Tafraoui et. 

al[28] 

Ghafari et. al[20] Berry et. 

al[29] 

Wille et. 

al[39] 

# Samples 7 50 41 7 

SCMs Silica Fume 

Metakaolin 

Silica Fume Fly ash 

Silica Fume 

Metakaolin 

Fine Aggregates  

D50)  

Sand- 230 μm 

Quartz- 11 μm 

Sand- 400 μm 

Quartz- 7 μm 

Sand- 500 μm Sand- 110 μm 

Sand- 500 μm 

Glass- 5 μm 

Fibers Steel fibers, 13 

mm in length 

and .16 mm in 

diameter 

Two types of 

steel microfibers 

with 

diameters/lengths 

of 0.2/0.15 mm 

and 13/10 mm. 

No Fibers 

Utilized 

Smooth, 

Hooked, and 

Twisted 

Fibers 

ranging from 

0.12-0.3mm 

in diameter 

and 6-30mm 

in length. 

 



BAYESIAN RIDGE REGRESSION

 Ridge regression is a form of least squares fitting with a 
hyperparameter λ that serves as a regularizer on the L2 norm of 
the model coefficients w

 Regularizer acts to penalize model complexity

 In Bayesian ridge regression, we trained an ensemble of 20 
separate models on these literature data – each with a randomly 
chosen value of λ

 Results in a distribution of models from which a posterior 
distribution of parameters can be estimated

 Greater accuracy

 Greater generalizability

 Uncertainty estimate on each point (= error bars)

 The parity plots for BRR indicate that parameterization of the 
UHPC model by compositional variables is more accurate than 
by latent variables

 20.6 MPa vs. 25.7 MPa RMSE, respectively
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composition model latent model



ASSESSING CONFIDENCE INTERVALS WITH MISCALIBRATION AREA

 Standard Bayesian models that provide uncertainty estimates 
often do not offer accurate confidence intervals

 Miscalibration area is a Bayesian error metric that provides a 
measure of how accurate the confidence intervals of a model 
predictions are

 Derived from plots of observed vs. expected proportion of 
population at a given confidence interval

 Negative deviation indicates that a model is overconfident in its 
uncertainty estimate

 The total (unsigned) areal deviation is reported as the 
miscalibration area

 While the RMSE for the compositional model is 25% lower than 
that of the latent model, the miscalibration area is ~3-times 
larger

 Suggests that the latent model has much greater 
generalizability
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 MSE RMSE (MPa) Miscalibration 

Area 

Bottom Layer 424 20.6 0.20 

Middle Layer 660 25.7 0.06 

 

Composition Latent



VALIDATION OF THE UHPC MODEL

 UHPC blends were formulated with sand having D50 

of 600 μm

 Greater than 500 μm sand used in training the 

algorithm

 Three new compositions were predicted by the 

algorithm parameterized by latent variables

 The model parameterized by composition was much 

less accurate (R2 = -0.06) than that parameterized by 

latent variables (R2 = 0.67)
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Composition Latent



CONCLUSIONS AND ACKNOWLEDGMENTS

 Even small datasets (10s of samples, not 1000s) on 

complex chemical systems can be modeled using 

machine learning techniques

 Latent variables are a powerful tool in machine 

learning of complex cementitious systems
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