Data-Driven PSO-CatBoost Machine Learning Model to Predict the Compressive Strength of CFRP- Confined Circular Concrete Specimens

ACI Concrete Convention (Fall 2023-Boston)

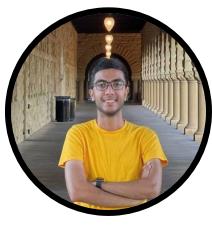
Open Topic Session

October 31st

Antonio Nanni

Francisco De Caso

Nima Khodadadi



Hossein Roghani

El-Sayed M. El-kenawy

INTRODUCTION

FRP-Confined Concrete

- Rising interest in using FRP in the construction sector.
- Significant amount of experimental and analytical research.
- Lateral confinement of concrete columns increases ductility and strength.
- Enhances the durability and service life concrete elements.
- Two major categories of research: 1) experimental investigations; and 2) analytical investigations (model development)

Fig.1. CFRP wrap¹ and filament wound FRP tubes².

Fig.2. CFRP-wrapped Columns for bridge retrofitting^{3,4}

¹ FRP Carbon Fibre Reinforcing Systems | Strong-Tie | Together we're helping build safer stronger structures (strongtie.com.au).
 ² Ahmed, A. A., & Masmoudi, R. (2018). Journal of Composites Science, 2(4), 57.
 ³ ctech-carbon-wrap-frp-Columns-bridge-Retrofitting-concrete | CTech-LLC

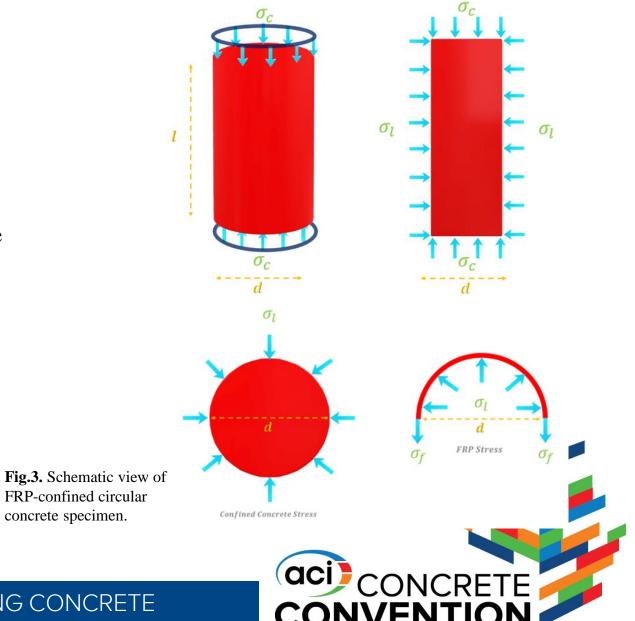
INTRODUCTION

FRP-Confined Concrete

- Cylindrical concrete elements subjected to triaxial compressive stresses.
- Subjected to compression, confined concrete tends to expand in the radial direction.
- Expansion generates a reactively confining radial pressure at the interface between FRP and concrete.

$$\sigma_l = \frac{2t_f \sigma_f}{D}$$

• *D* is diameter, t_f is thickness of FRP, σ_l is confining pressure, and σ_f is hoop tensile stress of FRP.



INTRODUCTION

Machine Learning

- In recent times ML methods gained significant recognition.
- Primary benefit: doesn't require the user to understand a problem comprehensively.
- Sufficient data and domain knowledge, an ML model assists in predicting outcomes in a complex system.
- Developing a resilient ML model: a complex and time-consuming endeavor.
- Process: appropriate algorithm, development of an efficient model, and optimization of hyperparameters.
- Algorithms: tree-based ML algorithms and deep neural networks, possess multiple hyperparameters that substantially impact the accuracy of predicted values by model.
- Precise adjustment of hyperparameters using an optimization technique holds significant importance.

Fig.4. Prediction process with ML.

Primary advancements and contribution

- A data-driven ML model based on PSO and the CatBoost algorithm (PSO-CatBoost) is proposed.
- Goal: to predict the compressive strength of CFRP-CC under axial compression.
- Extensive dataset on CFRP-CC specimens from 1991 to mid-2023.
- Evaluate effectiveness of CatBoost in estimating compressive strength of CFRP-CC under axial compression.
- CatBoost methods are rarely used in ML issues, although PSO is increasingly used.

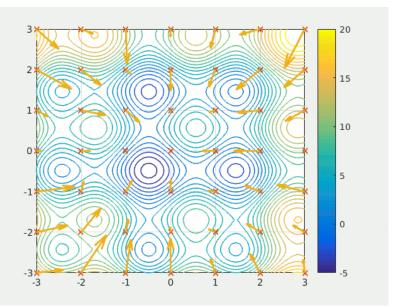


Fig.5. A Particle Swarm searching for the global minimum of a function.

¹ By Ephramac - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=54975083

EXISTING COMPRESSIVE STRENGTH OF FRP-CC MODELS

Existing Compressive Strength of FRP-CC Models

1. Mandal et al.'s Model:

$$f'_{cc} = 0.0017f'_{co} \left(\frac{E_f t_f}{D_{/2}} \frac{f_f}{f'_{co}}\right)^2 + 0.0232 f'_c \left(\frac{E_f t_f}{D_{/2}} \frac{f_f}{f'_{co}}\right) + f'_{co}$$

2. Karbhari et al.'s Model:

$$f'_{cc} = f'_{co} + 2.1 f'_{co} \left(\frac{2f_f t_f}{Df'_{co}}\right)^{0.87}$$

3. Lilliston and Jolly's Model:

$$f'_{cc} = 0.83f'_{co} + 0.05f'_{co} \left(\frac{2E_f t_f}{Df'_{co}}\right)$$

These models have been employed for comparison purposes in this study.

- 916 test results from 116 studies published between 1991 and mid-2023.
- Seven critical parameters: $D, H, f'_{co}, \rho_f, E_f, f_f, t_f$, and *Layers*. The target value is f'_{cc} .
- Normalization is an essential preprocessing step to address scale sensitivity.

$$x_{i,normal} = 2 \times \left[\frac{x_i - \min(x)}{Max(x) - Min(x)}\right] - 1$$

- Database only includes studies on circular concrete specimens.
- Without any internal or external reinforcement.
- Height-to-diameter ratio of specimen is less than or equal 5.
- Subjected to a monotonic concentric compressive load.
- Failure mode in all specimens was FRP rupture.

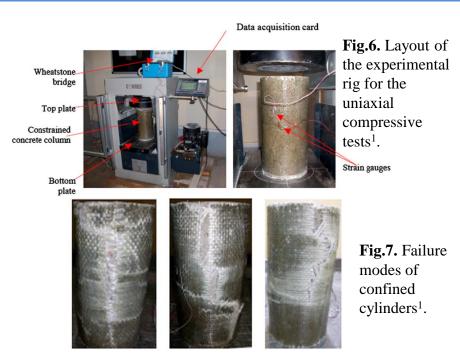


Table 1. Geometric and material properties of FRP-confined specimens.

Notation	Description	Unit
D	Diameter of compression member	mm
Н	Height of compression member	
f'co	Compressive strength of unconfined concrete	MPa
ρ_f	FRP reinforcement ratio	-
E_f	Tensile modulus of elasticity of FRP	GPa
f_{f}	Ultimate tensile strength of FRP	MPa
tf	Nominal thickness of FRP reinforcement	mm
Layers	Number of FRP layers	-
f'cc	Compressive strength of confined concrete	MPa
	f [°] co ρ _f E _f f _f t _f Layers	HHeight of compression member f'_{co} Compressive strength of unconfined concrete ρ_f FRP reinforcement ratio E_f Tensile modulus of elasticity of FRP f_f Ultimate tensile strength of FRP t_f Nominal thickness of FRP reinforcementLayersNumber of FRP layers

¹Bouchelaghem, H., Bezazi, A., & Scarpa, F. (2011).. Composites Part B: Engineering, 42(7), 1987-1993.

- Concrete strengths between 6.2 MPa to 169.7 MPa.
- CFRP composites with a modulus of elasticity between 16 GPa to 640 GPa.
- CFRP composites with an ultimate tensile strength from 174 MPa to 4900 MPa
- Reinforcement ratio from 0.001 to 0.162.
- Total nominal thickness of 0.09 mm to 5.84 mm.
- Compressive strength of confined concrete from 12.8 MPa to 303.6 MPa

_	Standard Deviation	Mean	Maximum	Minimum	Parameter
-	0.36	2	5	1.6	H/D
	24.8	45.3	169.7	6.2	f' _{co} (MPa)
	0.018	0.016	0.162	0.001	ρ_f
	102.9	221.6	640	16	$E_f(GPa)$
	1228	3128	4900	174	$f_f(MPa)$
	0.69	0.60	5.84	0.09	$t_f(mm)$
	40.7	86.3	303.6	12.8	f' _{cc} (MPa)

- 800 data points on CFRP-wrapped and 116 on CFRPfilled concrete tubes.
- 23 data points with a f'_{co} lower than 15 MPa (L), 687 data points with a f'_{co} between 15 MPa and 55 MPa (N), and 206 data points with a f'_{co} above 55 MPa (H).
- 825 data points with the E_f lower than 340 GPa (CFRP), 73 data points with E_f between 340 GPa and 520 GPa (HM_CFRP), and 18 data points with E_f above 520 GPa (UHM_CFRP).

Confinement Type	CFRP Type	Concrete classification	No. of datapoints
		L	22
	CFRP	Ν	581
		Н	120
Wrap	HM CFRP	L	0
		N	40
_		Н	29
_	UHM CFRP	L	0
		N	8
		Н	0
	CFRP	L	1
		N	50
_		H	51
		L	0
Tube	HM CFRP	N	4
		Н	0
		L	0
	UHM CFRP	N	4
		Н	6
Total 1	Experiments	916	i
	(ETE

 Distribution of input and output parameters, frequency of occurrence, and correlation between these parameters.

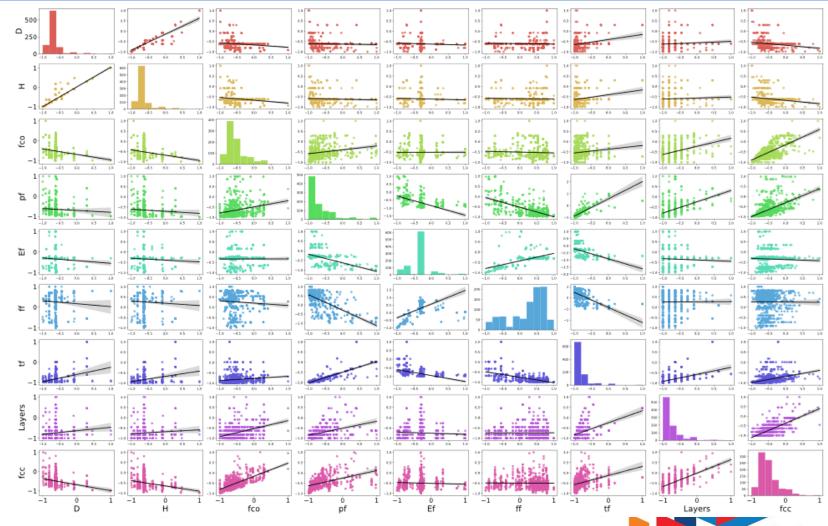


Fig.8. Multi-correlation among input and output variables.

CONCRETE CONVENTION

PERFORMANCE MEASURES

1. Residual Error

$$e = x_{Experimental} - x_{Predicted}$$

2. Coefficient of Determination

$$R^{2} = 1 - \frac{\sum_{i=1}^{N} (x_{exp,i} - x_{mod,i})^{2}}{\sum_{i=1}^{N} (x_{exp,i} - \bar{x})^{2}}$$

3. Mean Square Error

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (x_{exp,i} - x_{mod,i})^{2}$$

4. Root Mean Square Error

$$RMSE = \sqrt{\frac{\sum_{i=1}^{N} (x_{exp,i} - x_{mod,i})^2}{N}}$$

5. Mean Absolute Error

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |x_{exp,i} - x_{mod,i}|$$

CONSTRUCTION OF MODEL

Particle Swarm Optimization- Categorical

Boosting (PSO-CatBoost)

- Gradient Boosted Decision Trees (GBDTs), an ensemble method based on decision trees.
- This study is focused on one of the GBDT variations, namely Categorical Boosting (CatBoost), which is improved to generate a prediction model.

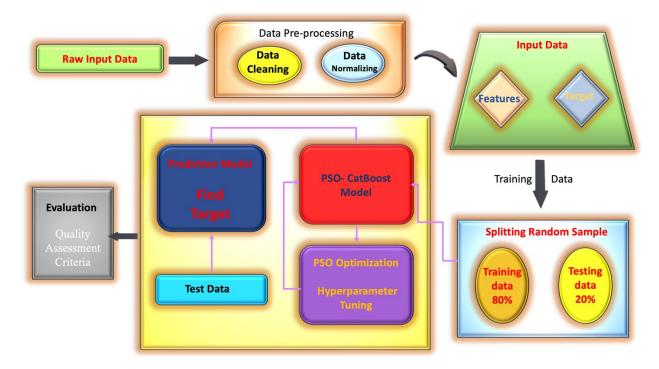


Fig.9. The architectural detail PSO-CatBoost Model.

Hyperparameters and Optimum Values

- Optimized hyperparameters utilized in the process of training the model.
- Model was run on a personal computer equipped with an Apple M2 Max processor, 96GB of RAM, and utilizing the macOS Ventura operating system.

Algorithm	Hyperparameters	Optimum Value
	Local coefficient (c_1)	0.5
PSO	Global coefficient (c_2)	0.3
	Inertia coefficient (w)	0.9
	Maximum iteration count (max_{iter})	500
	Population/swarm size (s)	10
	Depth	4.046
CatBoost	Learning rate	0.1
	L2-regularization	1.959

 Table 4. Optimum hyperparameters value for PSO-CatBoost model.

Interpretation of Model Results

- Model was trained using 80% of the data, while 20% used for testing.
- Spearman correlation technique to find correlations.
- Strong positive correlation between the t_f and ρ_f of (s=0.94)
- Strong positive correlation between and *D* and *H* (s=0.93).
- No. of layers has moderate correlations with t_f (s=0.68) and ρ_f (s=0.65).
- PSO-CatBoost model achieved R^2 scores of 0.9898 and 0.9571 in training and testing, respectively.
- PSO-CatBoost model showed comparatively lower error values (training and testing).

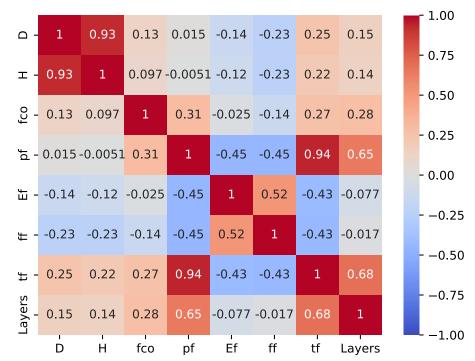


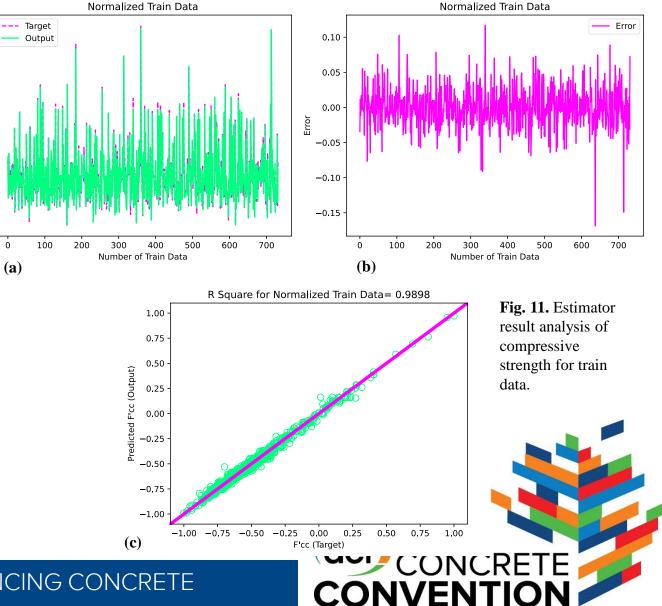
Fig.10. Heatmap for the correlation coefficient between variables.

CONVENTION

Data	R^2	MSE	MAE	RMSE	
Train	0.9898	0.0008	0.0219	0.0290	
Test	0.9571	0.0026	0.0373	0.0514	
All	0.9847	0.0012	0.0250	0.0347	

Predicted Vs. Observed (training data)

- Training data and the prediction model exhibit exceptional congruence.
- High degree of overlap indicates the model's ability to accurately reflect and predict the underlying patterns.
- Error margins for the training data indicate a high level of accuracy (most errors are less than 0.025).
- High R-squared value of 0.9898, signifying a strong relationship between independent and dependent variables.



THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

1.00

0.75

0.50

0.25

0.00

-0.25 -0.50

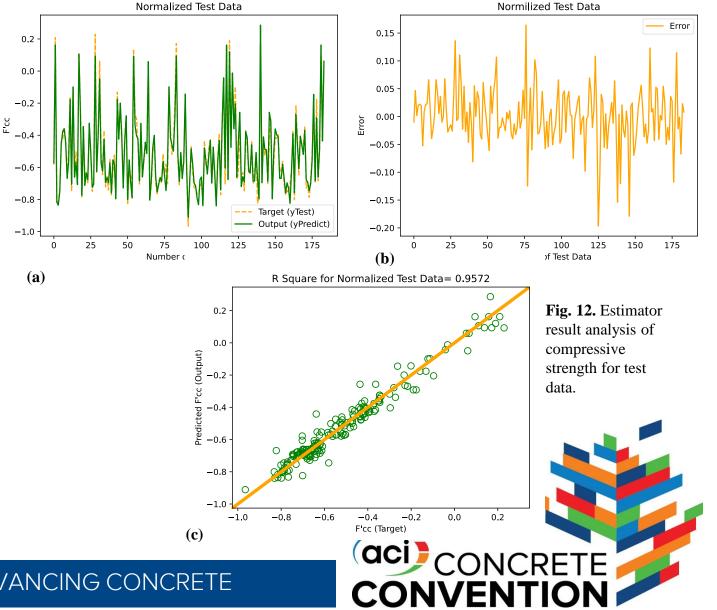
-0.75

-1.00

F'CC

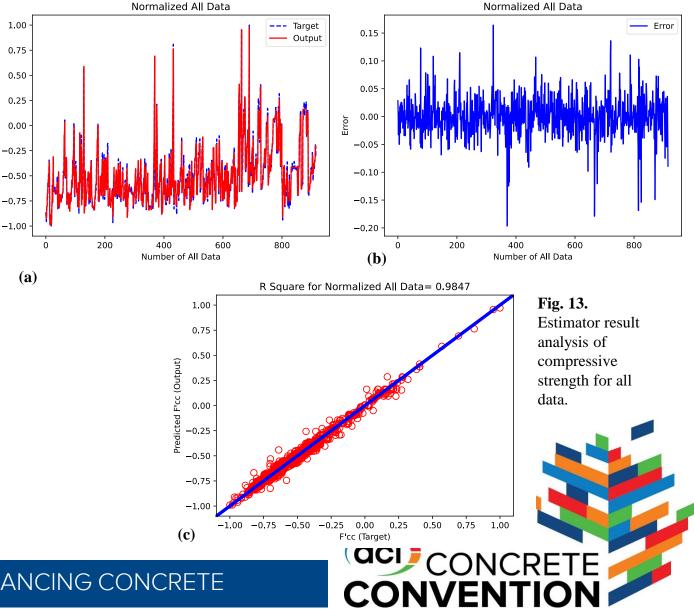
Predicted Vs. Observed (test data)

- Test data closely matches the target or desired output (model has been effectively trained and is able to generalize well to unseen data).
- Model is not overfitting to the training data.
- Error is evaluated by comparing predicted outcomes with actual data.
- R-squared value of 0.9572 obtained for the test data.



Visualize Model Outcomes

- Scatter plot Figure 13a. visualizes the differences between the predicted and actual values.
- Figure 13b. show patterns in the model's residuals.
- R-squared value of 0.9847 obtained and represented in Figure 9c.
- Line of correlation very closely resembled the ideal scenario of y = x (high degree of accuracy in predictions).

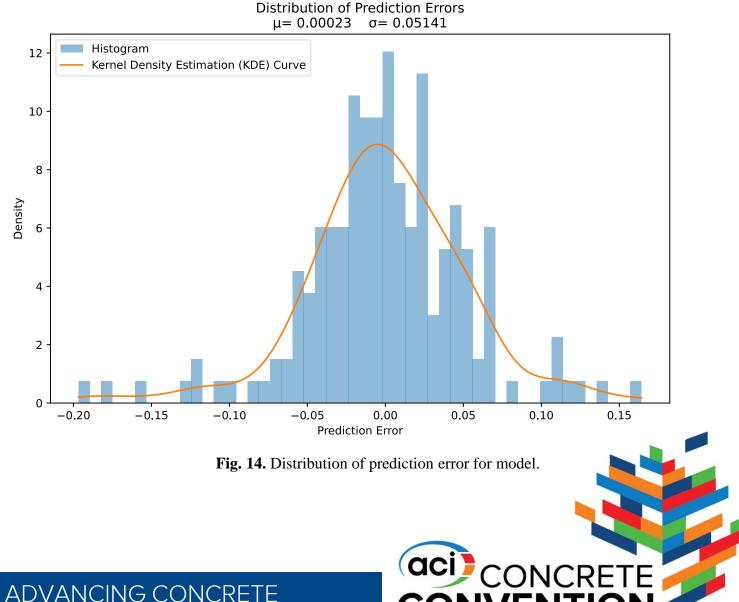


THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

20

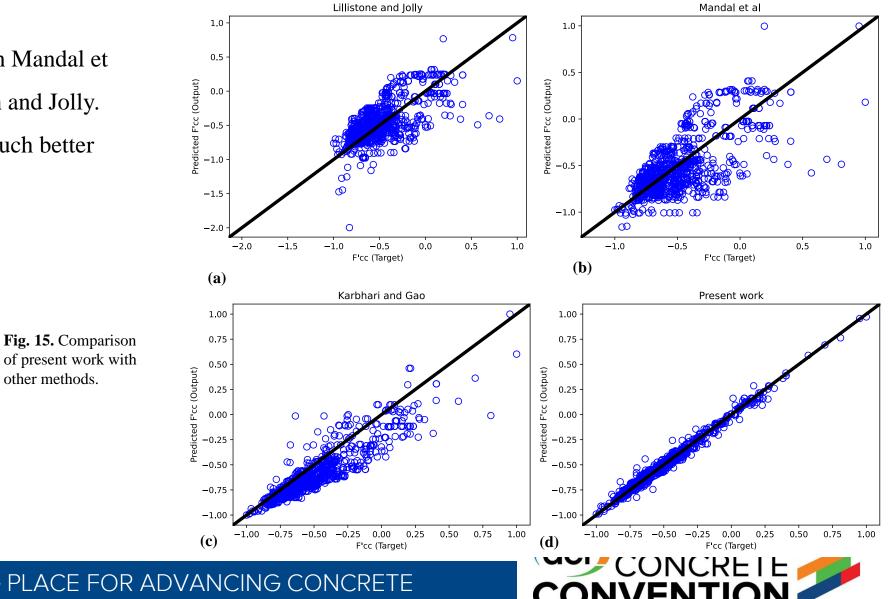
Kernel Density Estimation (KDE)

- Visual representation of distribution of prediction errors is provide through KDE curve and histogram.
- Combined graphical representation with mean and standard deviation values present overall quality of model's predictions, performance, and reliability.



Comparison of Models

- Proposed model compared with Mandal et ٠ al., Karbhari et al. and Lilliston and Jolly.
- PSO-CatBoost model shows much better ٠ performance.

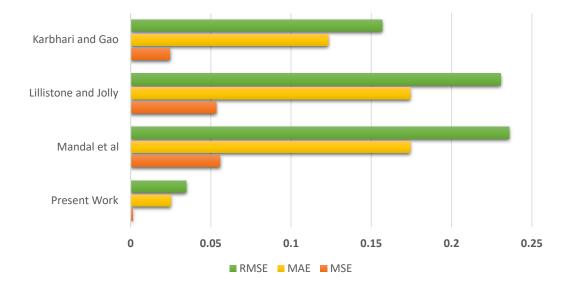


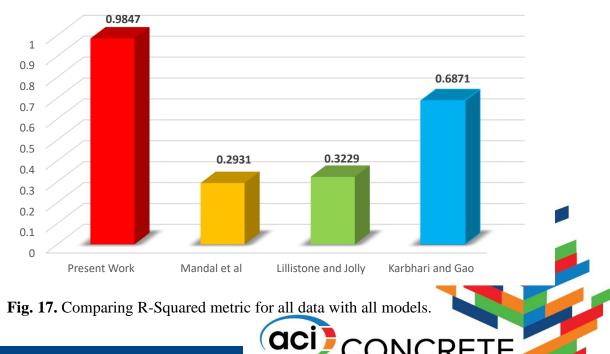
THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

other methods.

Comparison of Models

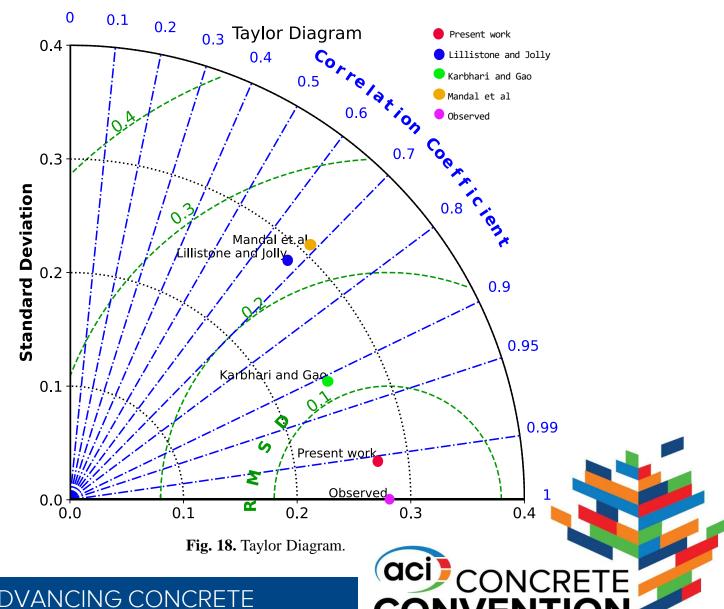
- PSO-CatBoost predicts quite accurately and outperforms other models.
- Proposed model obtains an RMSE of 0.0347, an MSE of 0.0012, and an MAE of 0.0250.
- These values are noticeably lower than those for empirical equations.
- R-squared value of the proposed model is noticeably higher than those for empirical equations.





Taylor Diagram

- R-squared, RMSD, and SD of the patterns are represented in Taylor diagram.
- Proposed model performs better than other models in most cases (greater correlation coefficient, smaller standard deviation, and lower RMSE).



Feature Importance Analysis of Model

- ML models: difficult to interpret, frequently seen as black boxes.
- Explainable ML approaches are essential to identify key features.
- SHAP-based feature contribution (SHapley Additive exPlanations)^L
 and Permutation Feature Importance (PFI)

SHapley Additive exPlanations

- Positive value denotes a potential influence that might be beneficial to prediction, negative value denotes a potential contribution that could be negative.
- Higher values of f_{co} and f_{f} have a positive impact on the prediction.
- Lower values of FRP reinforcement ratio and thickness of FRP have a negative impact.

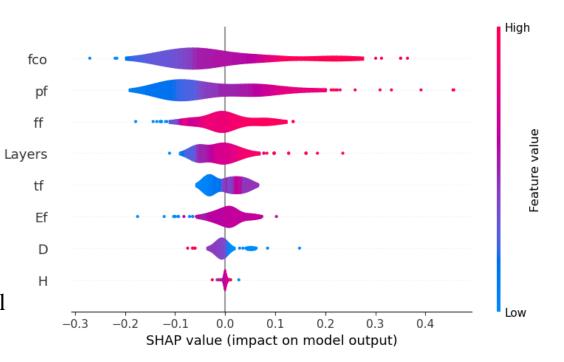
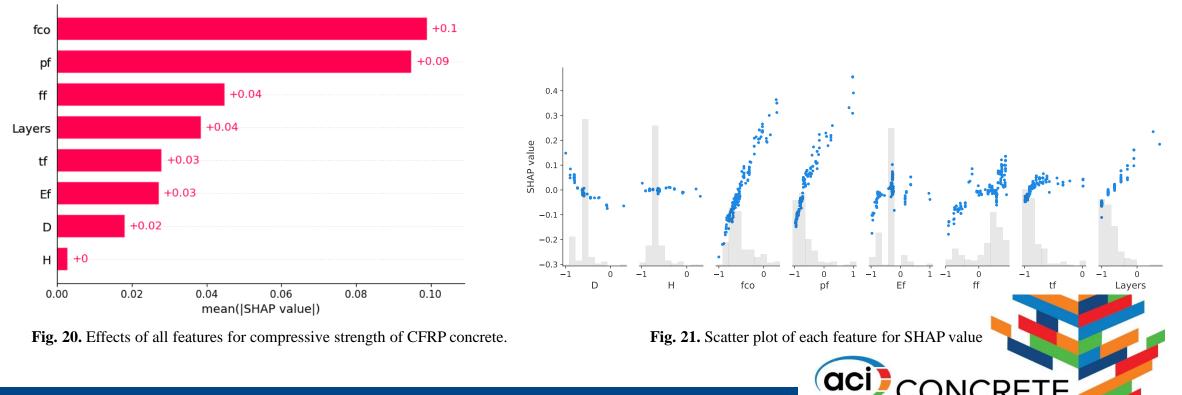


Fig. 19. The SHAP diagram for impact of features.

SHapley Additive exPlanations (Cont'd)

- Mean SHAP value offers a comprehensive assessment of the significance of a feature.
- Determining the average of absolute SHAP values for a specific feature across all instances.
- High mean SHAP value indicates substantial influence (regardless of whether positive or negative).



Permutation Feature Importance (PFI)

- SHAP values do not reveal the specific impact of each feature.
- PFI displays the features that influence the overall performance of the model.
- Quality of predictions decrease when the information is disrupted.
- Original predictor's information is not crucial when drop is small (model still does reasonably well even without it).
- Considerable reduction shows initial predictor had a notable impact on the accuracy of predictions.
- Analysis provides a critical understanding of decision-making process of model.

Feature Importance Analysis of

Model

- ρ_f and f'_{co} are the most influential factors in predicting f'_{cc} .
- Lastly, it seems that the other features do not significantly impact the predictions.

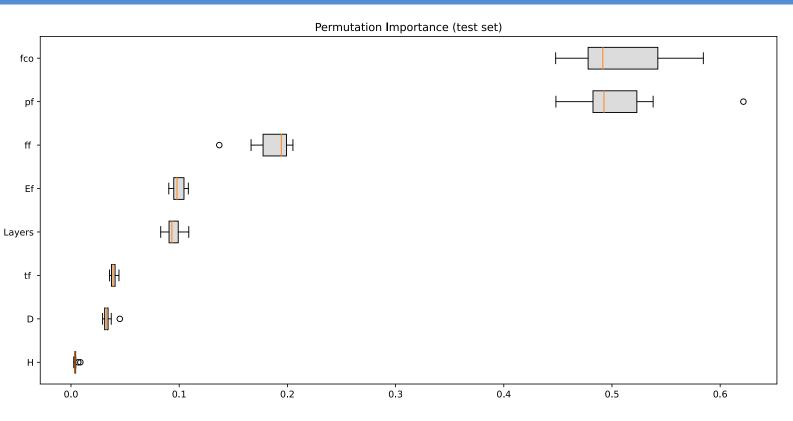


Fig. 22. The box plot of permutation importance for features of the dataset.

Conclusions

- Robustness of ML algorithms, scope and details of the dataset, affect the efficacy of the algorithm.
- Boosting algorithms were proposed to increase prediction accuracy.
- Utilizing CatBoost with PSO algorithm, the accuracy of estimating f'_{co} can be significantly improved.
- PSO-CatBoost exhibited the highest level of performance, attaining a notable coefficient of determination value of 0.9597.
- Capacity of PSO-CatBoost algorithm to reduce MSE and RMSE was identified through a comparison between the experimental and proposed models.
- According to feature importance assessments, ρ_f was the most crucial characteristic.
- ML model performed better than other empirical equations and showed significant promise as a substitute strategy for dealing with complicated structural applications and forecasting design problems.

Conclusions (Cont'd)

- Future research efforts are recommended to focus on using the proposed method to improve prediction accuracy using other experimental models.
- Other optimization algorithms should be tested instead of PSO to gain more accurate results.
- While machine learning is increasingly integrated into daily life, its use is still primarily limited to individuals with specialized knowledge.
- Technical complexity of machine learning, which relies on advanced mathematics, statistics, and coding skills, presents a significant barrier to entry for non-experts.

