Blast Load Prediction for Deflagration of Low Explosives in Confined Concrete Structures

Ming Liu, Ph.D., P.E. NAVFAC EXWC, Port Hueneme, CA

ACI Concrete Convention in Boston, MA October 30, 2023

CONVENT

Motivation

- According to ACI 370R-14, when design of concrete structures involving containment of internal explosion effects, both shock waves and gas pressures should be considered. For high explosives (HE) detonations, the empirical relationships in UFC 3-340-02 are used. Logically, the TNT equivalencies for low explosives (LE) (e.g., propellants and pyrotechnics) are used in some cases to predict the internal gas pressure-time histories, as mentioned in Section 5.2.2 of ACI 370R-14.
- The confined burns of LE in a confined concrete structure without venting generates deflagration (instead of detonation) so that the gas pressures can last tens of minutes. Thus, **dynamic design for HE is not applicable for LE.**
- The confined burns of LE in a confined concrete structure without venting involve complex convective combustion processes where chemical / combustion and aerodynamic experts should play an important role in predicting gas pressures.

ac

TNT equivalencies do not work for LE.

Table of Contents

- Hazard Classification
- Low Explosives (LE) (HD 1.3)
- Measured Internal Pressure Time History
- HD 1.3 Deflagration vs. HD 1.1 Detonation
- Computer Modeling of Internal Pressure
- Fast Running Model (Ideal Gas Law) without venting
- Fast Running Model (Ideal Gas Law) with venting
- Conclusions

Hazard Classification

Hazard Class	Material		
Class 1	Explosives		
Class 2	Gases		
Class 3	Flammable liquids		
Class 4	Flammable solids		
Class 5	Oxidizing substances and organic peroxides		
Class 6	Toxic and infectious substances		
Class 7	Radioactive materials		
Class 8	Corrosive substances		
Class 9	Miscellaneous dangerous substances and articles		

CONCRETE

Hazard Classification (cont.)

Hazard Division	Hazard Type				
1.1	Mass explosion				
1.2.x	Non-mass explosion, fragment producing				
1.3	Mass fire, minor blast or fragment				
1.4	Moderate fire, no significant blast or fragment				
1.5	Explosive substance, very insensitive (with mass explosion hazard)				
1.6	Explosive article, extremely insensitive (no mass explosion hazard)				

CONCRETE CONVENTION

Low Explosives (LE) (HD 1.3)

- Fire (thermal) stimulus is the primary cause in 75% explosives-related accidents from 1900 2012.
- HD 1.3 substances and items account for approximately 11% by weight in the U.S. Navy inventory (2010).
- The burning of LE (HD 1.3) substances and items is different from the detonation of HE (HD 1.1).

Internal Pressure – Time History (Concrete Structure)

Internal Pressure - Time History (Concrete Structure) (cont.)

Internal Pressure - Time History (Steel ISO Container)

- Burn down (27 s post initiation)
- Flare up (39 s post initiation)
- Large 2nd jet plume (55 s post initiation)

Internal Pressure – Time History (Steel ISO Container) (cont.)

Internal Pressure – Time History (Steel ISO Container) (cont.)

CONVENTIO

HD 1.3 Deflagration vs. HD 1.1 Detonation

aci) CONCRETE

CONVENTION

Computer Modeling of Internal Pressure (Concrete Structure)

13

When W (in kg) HD 1.3 burning in a confined structure (V in m³) without venting

$P_{internal}$ V / T_v = 1 atm. (W G) / 273K

where internal temperature $T_v = 500$ K or 227 °C or 440 °F for concrete structures 1,600K or 1,327 °C or 2420 °F for steel ISO containers

G (Average Grain Mole) = 39 moles of Gas per kilogram (STP) G (M1 propellant)= 45 moles of Gas per kilogram (STP)

Fast Running Model (Ideal Gas Law) without venting (cont.)

P _{internal} (in atm.) = W/V (39 moles) (0.0224 m³/mole) (500K/273K) = $1.61D_{atm}$ where D _{atm} = Loading Density = W / V in kg/m³.

For the break-up (rupture) pressure of a concrete structure, P _{rupture} (e.g. 36 psi for concrete structures)

P_{rupture} (psi) / 14.7 (psi / atm) = 1.61 D_{atm} (internal temperature = 500K)

 $P_{rupture}$ (psi) = 24 D _{atm} (internal temperature = 500K) = 24 W / V

W (max. in kg) = P _{rupture} (psi) V (m³) / 24 = 0.04 P _{rupture} (psi) V (m³)

aci

Example (2m x 2m x 2m - 8m³ Concrete Structure)

If M1 propellant W < 17 lbs. (5 lbs.), no rupture occurs when the internal temperature is less than 500 °C or 773K or 932 °F and the container's strength is 35 psi (10 psi)

aci

CONCRETE

If M1 propellant W < 350 lbs. (100 lbs.), no rupture occurs when the internal temperature is less than 500 °C or 773K or 932 °F and the container's strength is 35 psi (10 psi)

aci

CONCRETE

Fast Running Model (Ideal Gas Law) with venting

The gas exit velocity v _{exit} at the venting opens (A _{vent} in m^2)

For un-choked flow, v_{exit} =
$$\sqrt{\frac{T_{\nu}R}{M_{w}}\frac{2\gamma}{\gamma-1}}\left[1-\left(\frac{P_{outside}}{P_{internal}}\right)^{\frac{\gamma-1}{\gamma}}\right]$$

For choked flow, v_{exit} =
$$\sqrt{\frac{T_{\nu}R}{M_{w}}}\gamma \left(\frac{2}{\gamma+1}\right)^{\frac{\gamma+1}{\gamma-1}}$$

 $v_{exit} = 106 \text{ m} / \text{sec. (constant) when } Tv = 500 ^{\circ}C$ For nitrocellulose based propellants, the ratio of specific heats $\gamma = 1.26$, R = 8.3144621 Joules/(mole K), a typical molecular weight $M_w = 247 \text{ g/mole}$

For un-choked flow, v_{exit} = 1,113
$$\sqrt{1 - \left(\frac{P_{outside}}{P_{internal}}\right)^{0.2063}}$$
 (m / sec.)
THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

For the un-choked gas exit velocity, only gas exit velocity coefficient is plotted herein. The choked gas exit velocity increases from 74 to 166 m/ sec. when Tv increases from 100 to 1,600 °C. (e.g., Tv = 500 °C, a constant of 106 m /sec.)

aci

CONCRETE

Pressurization in Confined HD 1.3 Burning with Venting

The gas exit volume V _{gas} during Δt seconds at the venting A _{vent} in m² (Tv = 500 °C)

For un-choked flow, V _{gas} =
$$C_D(A_{vent})$$
 502 $\sqrt{1 - \left(\frac{P_{outside}}{P_{internal}}\right)^{0.2063}} (\Delta t)$

For choked flow, V _{gas} = $C_D(A_{vent})$ 106(Δt) = 68 (A_{vent})(Δt) (m³)

where C $_{D}$ = discharge coefficient (typically 0.64).

$$P_{internal}$$
 (atm.) = ((WG)T_v / 273K - V_{gas}) / V

 $\Delta P_{internal}(atm.) = (\dot{m}(\Delta t)(39 \text{ moles}) (0.0224 \text{ m}^3/\text{mole}) (773/273) - V_{gas}) / V$

 $\Delta P_{internal} (atm.) = (2.47 \dot{m}(\Delta t) - V_{gas}) / V$ (Tv = 500 °C)

where $\dot{m}(\Delta t)$ is the total mass (in kg.) burning during Δt seconds.

Un-Choked Flow Pressurization (Tv = 500 °C)

For un-choked flow, V _{gas} = $C_D(A_{vent})$ 502 $\sqrt{1 - \left(\frac{P_{outside}}{P_{internal}}\right)^{0.2063}} (\Delta t)$

Let
$$p_{out/in} = \frac{P_{outside}}{P_{internal}}$$
, $V_{gas} = 321(A_{vent}) \sqrt{1 - (p_{out/in})^{0.2063}} (\Delta t)$

 $\Delta P_{\text{internal}} (\text{atm.}) = (2.47 \quad \dot{m}(\Delta t) - V_{\text{gas}}) / V$ $= (2.47 \quad \dot{m} / V - 321 \quad \frac{A_{vent}}{V}) \sqrt{1 - (p_{\text{out/in}})^{0.2063}}) (\Delta t)$

When 2.47 \dot{m} – 321 $\sqrt{1 - (p_{out/in})^{0.2063}}(A_{vent}) \le 0$, P_{internal} will not increase.

CONVENT

Thus, A _{vent} (in m²) \geq 0.0077m (kg / sec.) / $\sqrt{1 - (p_{out/in})^{0.2063}}$

Un-Choked Flow Pressurization (Tv = 500 °C) (cont.)

By definition of the choked flow, p_{out/in} $\leq \left(\frac{2}{\gamma+1}\right)^{\frac{\gamma}{\gamma-1}} = 0.553$

V_{gas} =321 $(A_{vent})\sqrt{1 - (0.553)^{0.2063}}(\Delta t) = 109 (A_{vent})(\Delta t)$

 $P_{\text{internal}} = (2.47 \text{ m}(\Delta t) - V_{\text{gas}}) / V$ $= (2.47 \text{ m} -109 (A_{vent}))(\Delta t) / V$

When 2.47 \dot{m} -109A _{vent} \leq 0, P _{internal} will not increase.

Thus, A_{vent} (in m²) $\ge 0.022 \dot{m}$ (kg / sec.) (Tv = 500 °C)

When p _{outside} = 1 atm. P _{internal} \leq 1.81 atm. = 26.6 psi.

For choked flow, $V_{gas} = C_D(A_{vent})$ 106 (Δt) = 68 (A_{vent})(Δt) (m³) $\Delta P_{internal}$ (atm.) = (2.47 $\dot{m}(\Delta t) - V_{gas}$)/V = (2.47 $\dot{m} - 68 A_{vent}$)(Δt)/V When 2.47 \dot{m} - 68 A vent \leq 0, P _{internal} will no longer increase. Thus, A _{vent} (in m²) \geq 0.036 \dot{m} (in kg / sec.)

The minimum venting area A $_{vent}$ (in m²) increases from 0.025 to 0.056 m (kg / sec.) when the internal temperature increases from 100 to 1,600 °C.

acı

CONCRE

Since HD 1.3 burning in a confined concrete structure with venting involves convection and hot gas turbine, m varies significantly. The integrated violence models may be used to estimate m.

Conclusions

- HD 1.3 confined burning in a steel ISO container showed that all of the pressure sensors installed at different locations inside the container recorded the identical pressure-time histories before the container door opened. This indicated that the steel container behaved as a pressurized vessel.
- The internal pressure in a pressurized vessel after stopping the burns lasts much longer than the shock waves and gas pressures after HD 1.1 detonation (minutes or hours vs. milliseconds or seconds). Thus, the internal pressure caused by HD 1.3 confined burning should be treated as a sustaining load with static approaches instead of dynamic analysis for HD 1.1 detonation in terms of structural design and analysis.

Conclusions (cont.)

 It is very important to realize that the duration of internal gas pressures due to HD 1.1 detonation is much shorter than those due to HD 1.3 deflagration so that the TNT equivalences in terms of total energy, impulse, or peak pressure do not work for LE. The energy release rate is a critical parameter.

Fig. 5.1.2—Typical side-on pressure-time history for shock loads.

 The required venting area is a function of m. since HD 1.3 burns in a confined container with venting involves convection and hot gas turbine, m varies greatly.

ac

References

Risk Management for Explosives Safety under Uncertainty

Josephine Covino, Ph. D., Department of Defense Explosives Safety Board (DDESB) Alexandria, Virginia, USA

Ming Liu, Ph. D., P.E., F. ASCE (Presenter) Naval Facilities Engineering and Expeditionary Warfare Center (NAVFAC EXWC) Port Hueneme, California, USA

The 3rd International Conference on Structural Safety under Fire & Blast Loading Brunel University, London, UK 2-4 September 2019

EXPERIMENTAL DATA FOR HD 1.3 SYSTEMS COMBUSTION-DRIVEN EVENT

Josephine Covino Department of Defense Explosives Safety Board, Alexandria, VA Austin Bons, Nathaniel Davis

Naval Air Warfare Center Weapons Division, China Lake

Ming Liu Naval Facilities Engineering System Command Expeditionary Warfare Center, Port Hueneme, CA Jon Chrostowski

> ARCTOS Technology Solutions, LLC, Torrance, CA Clint Guymon Safety Management Services, West Jordan, UT

Technical Meeting HD 1.3 ISSUES

ARCTOS All In

DISTRIBUTION A: Approved for public release: distribution unlimited

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

The Influence of Combustion Properties on the Hazards Potential of HD 1.3 Materials

C. P. Romo, <u>A.I. Atwood</u>, K. P. Ford, A.D. Farmer, T.L. Boggs, Naval Air Warfare Center Weapons Division China Lake, California J. Covino Department of Defense Explosive Safety Board

6th International Symposium on Energetic Materials and their Applications

> Tohoku University Sendai, Japan

7-10 November 2017

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited

Thank you

For the most up-to-date information please visit the American Concrete Institute at:

THE WORLD'S GATHERING PLACE FOR ADVANCING CONCRETE

Back Up

Propellant	G (Moles of Gas per Gram)	Density (lbs/in.3)	T _v (K)	γ	$\Delta h_{exp}(kcal/g)$
M1	0.04533	0.0567	2417	1.2593	0.700
M2	0.03900	0.0597	3319	1.2238	1.080
M5	0.03935	0.0596	3245	1.2238	1.047
M6	0.04432	0.0571	2570	1.2538	0.758
M14	0.04338	0.0582	2710	1.2496	0.809
M15	0.04645	0.0600	2594	1.2557	0.799
M17	0.04336	0.0603	3017	1.2402	0.962
T20	0.04794	0.0548	2388	1.2591	0.712
M30 (T36)	0.04308	0.0567	3040	1.2485	0.974
M31 (T34)	0.04619	0.0595	2599	1.2527	0.818
M10	0.04068	0.0602	3000	1.2342	0.936
M16 (T6)	0.04307	0.0570	2362	1.2540	0.886
T18	0.04219	0.0588	2938	1.2421	0.910
T25	0.04133	0.0585	3071	1.2373	0.962
M26 (T28)	0.04157	0.0585	3081	1.2383	0.955
M7 (T4)	0.03543	0.0610	3734	1.2112	1.280
M8	0.03711	0.0581	3695	1.2148	1.244
M9	0.03618	0.0578	\$ 3799	1.2102	1.295
IMR	0.04191	0.0602	2835	1.2413	0.868
M12	0.04037	0.0600	2996	1.2326	0.933
M18	0.04457	0.0576	2577	1.2523	0.772
Bullseve	0.03700	0.0590	3780	1.2523	
Red Dot	0.03700	0.0590	3208	1.2400	
Руго	0.03964	0.0566	2487	1.2454	1.005
Black Powder	0.01250	0.0580	2800	1.1265	0.720

