Blast Load Prediction for Deflagration of Low
Explosives in Confined Concrete Structures

Ming Liu, Ph.D., P.E.
NAVFAC EXWC, Port Hueneme, CA

ACI Concrete Convention in Boston, MA
October 30, 2023

Declaimer: the work presented herein is not related to the author's employment at NAVFAC EXWC. The views, information or options
expressed in the presentation are solely those of the author and do not necessarily reflect the views of NAVFAC EXWC or any other
governmental agencies. NAVFAC EXWC is not responsible and does not verify for accuracy of any information contained in this :resentation.

‘ GC1¥ CONCRETE »-
THE WORLD’S GATHERING PLACE FOR ADVANCING CONCRETE =5
RGN CONVENTION




Motivation

« According to ACI 370R-14, when design of concrete structures involving
containment of internal explosion effects, both shock waves and gas
pressures should be considered. For high explosives (HE) detonations, the
empirical relationships in UFC 3-340-02 are used. Logically, the TNT
equivalencies for low explosives (LE) (e.g., propellants and pyrotechnics) are
used in some cases to predict the internal gas pressure-time histories, as
mentioned in Section 5.2.2 of ACI 370R-14.

« The confined burns of LE in a confined concrete structure without venting
generates deflagration (instead of detonation) so that the gas pressures can
last tens of minutes. Thus, dynamic design for HE is not applicable for LE.

« The confined burns of LE in a confined concrete structure without venting
involve complex convective combustion processes where chemical /
combustion and aerodynamic experts should play an important role in
predicting gas pressures. =

« TNT equivalencies do not work for LE. ]!
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Hazard Classification

Hazard Class Material

Class 1 Explosives

Class 2 Gases

Class 3 Flammable liquids

Class 4 Flammable solids

Class 5 Oxidizing substances and organic
peroxides

Class 6 Toxic and infectious substances

Class 7 Radioactive materials

Class 8 Corrosive substances

Class 9 Miscellaneous dangerous substances
and articles
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Hazard Classification (cont.)

I;::iz:i:)dn Hazard Type

1.1 Mass explosion
1.2.x Non-mass explosion, fragment producing
1.3 Mass fire, minor blast or fragment
1.4 Moderate fire, no significant blast or fragment
1.5 Explosive substance, very insensitive

(with mass explosion hazard)
1.6 Explosive article, extremely insensitive

(no mass explosion hazard)
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Low Explosives (LE) (HD 1.3)

 Fire (thermal) stimulus is the primary cause in 75%
explosives-related accidents from 1900 — 2012.

« HD 1.3 substances and items account for approximately
11% by weight in the U.S. Navy inventory (2010).

* The burning of LE (HD 1.3) substances and items is
different from the detonation of HE (HD 1.1).
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Internal Pressure — Time History (Concrete Structure)
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Internal Pressure — Time History (Steel ISO Container)

+, +27919.767 ms T+: +36301.017 ms T+ +52716.017 ms

» Burn down (27 s post initiation) « Flare up (39 s post initiation) * Large 2njet plume (55 s post
initiation)
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Internal Pressure — Time History (Steel ISO Container) (cont.)

Internal Pressure Gauges I1SO 1

—|PR1 —I|PR2 ——|PR3 IPR4 ——IPRS IPR6 =—IPR7 ——IPR S8
12.00
Door ruptures 80000
70000
9.00 ,
60000
C) =
) 50000
a. —
® o
£ 6.00 40000 3
= a
a o
& 30000 ©-
3.00 20000
;: E 10000
0.00 0
301.00 301.50 302.00 302.50 303.00

(aci? CONCRETE
CONVENTION

THE WORLD’S GATHERING PLACE FOR ADVANCING CONCRETE



Internal Pressure — Time History (Steel ISO Container) (cont.)
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Fig. 5.1.1—Pressure transducer trace from high explosive
detonation (UFC 3-340-02). (Note: 1 psi = 6.895 kPa.)
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Computer Modeling of Internal Pressure (Concrete Structure)
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Fast Running Model (Ideal Gas Law) without venting

When W (in kg) HD 1.3 burning in a confined structure (V in m?3)
without venting

P..aVIT,=1atm. (W G)/273K

interna

where internal temperature T, = 500K or 227 °C or 440 °F
for concrete structures
1,600K or 1,327 °C or 2420 °F
for steel ISO containers

G (Average Grain Mole) = 39 moles of Gas per kilogram (STP)
G (M1 propellant)= 45 moles of Gas per kilogram (STP)

N~
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Fast Running Model (Ideal Gas Law) without venting (cont.)

P internal (i @tm.) = W/V (39 moles) (0.0224 m3/mole) (500K/273K) = 1.61D,,,
where D ., = Loading Density = W / V in kg/m3.

For the break-up (rupture) pressure of a concrete structure, P
(e.g. 36 psi for concrete structures)

rupture

P rupture (PSI) / 14.7 (psi / atm) =1.61 D ,, (internal temperature = 500K)
P upture (PS1) =24 D 4, (Internal temperature = 500K) =24 W /V
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Example (2m x 2m x 2m — 8m?3 Concrete Structure)

—Protective Construction (8 m"3, 35 psi)

—Frangible Pannel (8 m"3, 10 psi)

0 400 800 1200 1600
Internal Temperature (°C)

If M1 propellant W < 17 Ibs. (5 Ibs.), no rupture occurs when the
Internal temperature is less than 500 °C or 773K or 932 °F and the -~
container’s strength is 35 psi (10 psi) Ny
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Example (50 ft. x 14 ft. x 8 ft. Earth Covered Magazine, ECM)

—Protective Construction (162 m"3, 35 psi)
—Frangible Pannel (162 m”3, 10 psi)

800

600

400

W (Ibs.)

200

0 400 800 1200 1600
Internal Temperature (°C)

If M1 propellant W < 350 Ibs. (100 Ibs.), no rupture occurs when the
Internal temperature is less than 500 °C or 773K or 932 °F and the -~
container’s strength is 35 psi (10 psi) Ny
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Fast Running Model (Ideal Gas Law) with venting

The gas exit velocity v .,;; at the venting opens (A .t in M?)

My, y—1 Pinternal

y-1
For un-choked flow, v ¢ = \/Tsz_y 1= (M) ]

My, y+1

y+1
For  choked flow, v o = |22y (i)y_l

V ot = 106 m/ sec. (constant) when Tv = 500 °C
For nitrocellulose based propellants, the ratio of specific heats y = 1.26,

R =8.3144621 Joules/(mole K), a typical molecular weight M, = 247 g/mole

internal
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Fast Running Model (Ideal Gas Law) with venting (cont.)

S 1000
g —Un-choked Gas Exit Velocity Coefficient
800 —

é —Choked Gas Exit Velocity (m/s)
2 600
O
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0
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Internal Temperature (°C)

For the un-choked gas exit velocity, only gas exit velocity coefficient is
plotted herein. The choked gas exit velocity increases from 74 to 166 m/ sec.
when Tv increases from 100 to 1,600 °C. (e.g., Tv =500 °C, a constant of 196
m /sec.) T
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Pressurization in Confined HD 1.3 Burning with Venting

The gas exitvolume V ., during At seconds at the venting A ¢, in m?
(Tv =500 °C)

)0.2063

(At)

internal

For un-choked flow, V 4, = Cp(Apent) 502 \/1 — (—Poursfde

For  choked flow, V .5 = Cp(Apene) 106(At) = 68 (Ayene) (At) (m3)
where C ; = discharge coefficient (typically 0.64).

P internal (atm-) = ((WG)Tv/ 273K -V gas) IV
AP inemal (atm.) = (M (At)(39 moles) (0.0224 m3/mole) (773/273) -V 45 ) IV
AP et (atm.) = (247 M(AY) =V o6 )/ V (Tv = 500 °C)

where m(At) is the total mass (in kg.) burning during At seconds.
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)0.2063

For un-choked flow, V s = Cp(Ayent) 502 \/ 1- (M (At)

Pinternal

Let P out/in = ;Ouﬂ ) V gas = 321 (Avent) \/1 - (p out/in)o'zmi3 (At)

internal

AP (remal (atm.) = (2.47 m(At) — gas )AY

= (247 MV -321 222 /T = (p 40 °2°%) (A1)

When 2.47 m - 321 \/1 o (p ouUin)O'zoeg(A vent) <0,P internal will not increase.

Thus, A ent (iNM2) > 0.0077m ( kg /sec.) /1= (P ouyin) 2063
[
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Un-Choked Flow Pressurization (Tv = 500 °C) (cont.)

y

2

By definition of the choked flow, p .. < (—)”'1 = 0.553

y+1

V g =321 (Apene)y/ 1 — (0.553)02063(At) = 109 (Apene) (AL)

P internal — ( 2.47 I’h(At) -V gas ) I'V
= (247 m-109 (Ayent))(At) IV

When 2.47 th -109A .o <0, P inemal Will NOt increase.

Thus, A . (in m2) > 0.022m ( kg / sec.) (Tv =500 °C)

Whenp ousige = 1 atM. P iierma € 1.81 atm. = 26.6 psi.
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Choked Flow Pressurization (Tv = 500 °C)

For  choked flow, V g5 = Cp(Apenc) 106 (At) = 68 (Ayen)(At) (m?)

AP internal (atm-) = (247 m(At) -V gas )/V = (247 m — 68 Avent ) (At)/v

When 2.47m - 68 Avent =0, P ,.ma Will NO longer increase.

Thus, A . (in M2) 2 0.036m (in kg / sec.)

The minimum venting area A . (in m?) increases from 0.025 to 0.056 m
(kg / sec.) when the internal temperature increases from 100 to 1,600 °C.
Since HD 1.3 burning in a confined concrete structure with venting

Involves convection and hot gas turbine, m varies significantly. The
Integrated violence models may be used to estimate m. il
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Conclusions

 HD 1.3 confined burning in a steel ISO container showed that all
of the pressure sensors installed at different locations inside the
container recorded the identical pressure-time histories before the
container door opened. This indicated that the steel container
behaved as a pressurized vessel.

« The internal pressure in a pressurized vessel after stopping the
burns lasts much longer than the shock waves and gas pressures
after HD 1.1 detonation (minutes or hours vs. milliseconds or
seconds). Thus, the internal pressure caused by HD 1.3
confined burning should be treated as a sustaining load with
static approaches instead of dynamic analysis for HD 1.1
detonation in terms of structural design and analysis.
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Conclusions (cont.)

« Itis very important to realize that the duration of internal gas
pressures due to HD 1.1 detonation is much shorter than those due
to HD 1.3 deflagration so that the TNT equivalences in terms of

total energy, impulse, or peak pressure do not work for LE. The
energy release rate is a critical parameter.
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Fig. 5.1.2—Typical side-on pressure-time history for shock
loads.

Time after explosion

 The required venting area is a function of m. since HD 1.3

burns in a confined container with venting involves convection %,
and hot gas turbine, m varies greatly.
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Propellant G (Moles of Gas per Gram) Density (Ibs/in.?) T, (K) Y Ah,(kcal/g)
Ml 0.04533 0.0567 2417 1.2593 0.700
M2 0.03900 0.0597 3319 1.2238 1.080
M5 0.03935 0.0596 3245 1.2238 1.047
M6 0.04432 0.0571 2570 1.2538 0.758
Mi14 0.04338 0.0582 2710 1.2496 0.809
MI5 0.04645 0.0600 2594 1.2557 0.799
M17 0.04336 0.0603 3017 1.2402 0.962
T20 0.04794 0.0548 2388 1.2591 0.712
M30 (T36) 0.04308 0.0567 3040 1.2485 0.974
M31 (T34) 0.04619 0.0595 2599 1.2527 0.818
M10 0.04068 0.0602 3000 1.2342 0.936
M16 (T6) 0.04307 0.0570 2362 1.2540 0.886
TI8 0.04219 0.0588 2938 1.2421 0.910
T25 0.04133 0.0585 3071 1.2373 0.962
M26 (T28) - 0.04157 0.0585 3081 1.2383 0.955
M7 (T4) 0.03543 0.0610 3734 12112 1.280
M3 0.03711 0.0581 3695 1.2148 1.244
M9 0.03618 0.0578 3799 1.2102 1.295
IMR 0.04191 0.0602 2835 1.2413 0.868
MI2 0.04037 0.0600 2996 1.2326 0.933
MI18 0.04457 0.0576 2577 1.2523 0.772
Bullseye 0.03700 0.0590 3780 1.2523
Red Dot 0.03700 0.0590 3208 1.2400
Pyro 0.03964 0.0566 2487 1.2454 1.005
Black Powder 0.01250 0.0580 2800 1.1265 0.720
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