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Design of UHPC: Current challenges

• Particle packing model-based method

✓ Design based on the packing density

✓ Other properties are not guaranteed

Select raw materials

Optimize binder combination

Determine sand degradation

Determine sand-to-binder ratio

Determine water-to-binder ratio

Determine fiber volume

• Performance-based method

✓ Achieve the optimal performance 

based on step-by-step testing 

✓ Extensive experimental testing (costly, 

time consuming, and labor intensive)
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It is important to develop more efficient and 

effective methods to design UHPC

Du, J., Meng, W., Khayat, K.H., et al., 2021. New development of ultra-high-

performance concrete (UHPC). Composites Part B: Engineering, 224, p.109220.



• Through a prediction-optimization framework, which was designed for 

auto-discovery of low-carbon cost-effective UHPC

AI-assisted design of UHPC
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Input Output

Available data (source of knowledge)

• Concrete design variables

• Concrete properties

Machine learning 

model (prediction)

Intelligent 

optimization

Concrete 

design variables

Concrete

properties

Target  

properties

Optimal  

design

Mahjoubi, S., Barhemat, R., Meng, W. and Bao, Y., 2023. AI-guided auto-discovery of low-carbon cost-effective ultra-high performance 

concrete (UHPC). Resources, Conservation and Recycling, 189, p.106741.

Prediction-optimization framework



• Machine learning models are trained by using existing data

✓ The prediction of UHPC properties is a typical regression task

✓ High-fidelity machine learning models are required for the regression task

How do machine learning models predict UHPC 

properties?
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Material design variables 

(e.g., water-to-cement ratio, 

sand-to-cement ratio, type 

of fibers, fiber content, etc.)

Material properties 

(e.g., compressive strength, 

tensile strength, flowability, 

ductility, porosity, etc.)

Link

Machine 

learning

Water-to-cement ratio
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The real problem is 

a high-dimensional 

(nD) problem.



• Design variables and key properties of UHPC

What data are used to train the models?
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Mixture design variables

• Types of ingredients

• Mixture variables

• Processing schemes

UHPC properties

• Fresh properties

• Hardened properties

Meng, W., Valipour, M. and Khayat, K.H., 2017. Optimization and performance of cost-
effective ultra-high performance concrete. Materials and Structures, 50(1), pp.1-16.



Challenges of AI-assisted design of UHPC

• Challenges of data (“the source of knowledge”)

✓ How can we efficiently collect data and update the dataset?

✓ How can we identify and remove anomalous data?

✓ How can we select relevant variables from many variables?

• Challenges of machine learning models

✓ How can we select or develop the most appropriate machine learning model?

• Challenges of design optimization

✓ How can we optimize concrete design by considering multiple design objectives? 

• Challenges of various wastes

✓ How can we deal with the large variations in the physical properties and chemical 

compositions of wastes?
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• Challenges of data 

✓ Self-updatable data collection (AI data collector)

✓ Artificial data generation (AI data generator)

✓ Data cleaning and variable selection (AI data processor)

• Challenges of machine learning models

✓ Automatic generation of machine learning model (AI auto-learner)

• Challenges of design optimization 

✓ Multi-objective optimization (AI optimizer)

• Challenges of various wastes 

✓ Artificial language for data presentation (AI data presenter)

Our research (AI designer)

7



• An approach was developed to automatically collect available data from 

published documents (e.g., journal papers, conference proceedings, 

reports, etc.)

• The collected database can be automatically updated through tracing 

and extracting data from new publications.

Self-updatable AI data collector
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• High efficiency and high accuracy

✓ Automate the data collection process 

(without human intervention, free of 

human errors)

Why do we use the AI data collector?

9

• Self-updatability

✓ Improve accuracy by increasing the 

database size

✓ Enable the consideration of new 

materials (e.g., new solid wastes)

✓ Enlarge the design space for lower 

carbon footprint and lower cost
10

15

20

25

30

35

2014 2016 2018 2020 2022

D
im

e
n

s
io

n
 o

f 
in

p
u

t 
v
a

ri
a

b
le

s

Year

Task：
Collect 1000 data

AI

1 hour

By human

1 month



• The accuracy increases with time

Self-updatability enhances the design capability
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• The life-cycle cost and carbon footprint are reduced (large design space)

R2  = Determination of coefficient 

MAE = Mean absolute error



Two methods were developed to generate new 

data (Generative AI)

• Method 1: Use established theories or equations

𝜀𝑐𝑢 = 6.6 ln
𝐿𝑓

𝑑𝑓
𝑉𝑓 − 10.7 

where 𝜀cu is tensile strain capacity; Lf is the fiber length; 

df is the fiber diameter; and Vf is the fiber content.

• Method 2: Use advanced machine learning 

techniques such as generative adversarial 

networks (GANs) 

Artificial data generation
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Transform an image to the style of Van Gogh’s starry night paint

Guo, P., Meng, W., Xu, M., Li, V.C. and Bao, Y., 2021. Materials, 14(12), p.3143.

R2  = Determination of coefficient 

MAE = Mean absolute error



• To generate artificial but reasonable and useful data

12
Mahjoubi, S., Barhemat, R., Meng, W. and Bao, Y., 2023. Resources, 

Conservation and Recycling, 189, p.106741.

GANs learn from existing real data

Test data

Generative adversarial network

Synthetic dataAI data



Anomalous data

• Anomalous data can be generated by many 

reasons (e.g., error in experiments, data entry, 

and post-processing)

• Anomalous data have different features from 

normal data

• Data are ranked by their normalness through 

supervised or unsupervised learning
Supervised anomaly detection 

based on bivariate analysis 

Unsupervised anomaly detection using isolation forest

13Mahjoubi, S., Meng, W. and Bao, Y., 2022. Applied Soft Computing, 115, p.108182.



Removing anomalous data improves accuracy

• The data-driven identification of anomalous data may treat normal data 

as anomalous data

• Contamination ratio (CR) is defined as the percentage of anomalous 

data in a dataset

• The optimal contamination ratio is obtained through a parametric 

analysis, to minimize the errors (i.e., maximize the accuracy) 

If CR=0, RMSE=0.056

If CR=7.6%, RMSE=0.043

14Mahjoubi, S., Meng, W. and Bao, Y., 2022. Applied Soft Computing, 115, p.108182.

The minimum error



Variable selection
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Variable selection based on correlation (mutual information and univariate linear regression)

• How to select appropriate design variables?

✓ Problem: When extra variables are included, the machine learning model will 

be complex and inaccurate. When the necessary variables are not included, 

the machine learning model will be inaccurate too.

✓ Criteria:

1. The design variables are independent of each other (low correlation)

2. The design variables are highly correlated to the concerned concrete properties

Mahjoubi, S., Meng, W. and Bao, Y., 2022. Applied Soft Computing, 115, p.108182.



• Individual models

✓ Linear regression

✓ Symbolic regression

✓ K-nearest neighbor

✓ Artificial neural network

✓ Support vector machine

✓ Decision tree

• Ensemble models

✓ XGBoost

✓ LightGBM

✓ Gradient boosting

✓ Random forest
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Representative types of machine learning models

Artificial neural network

Decision tree

Different models have different performance, 

depending on the specific problem.

Comparison

Mahjoubi, S., Meng, W. and Bao, Y., 2022. Applied Soft Computing, 115, p.108182.



• Automates the development of high-fidelity machine learning models

• The machine learning model development tasks:

✓ Model selection and combination

✓ Hyperparameter optimization

✓ Model complexity minimization

Automated machine learning
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Data 

processing

ML selection 

and control

Train and 

validation

Raw data

High-fidelity 

model

Auto-tune machine learning

Different types of models are combined 

to achieve high accuracy.

Mahjoubi, S., Meng, W. and Bao, Y., 2022. Applied Soft Computing, 115, p.108182.



• The Taylor diagram compares the accuracy of different machine learning 

methods

No. Machine learning method

1 Ridge

2 Passive aggressive

3 Multi-layer perceptron

4 Support vector machine

5 Partial least squares

6 Random forest

7 LightGBM

8 Azure Microsoft

9 Proposed method

18

Auto-tune machine learning shows high accuracy

The proposed method had the lowest errors.

Mahjoubi, S., Meng, W. and Bao, Y., 2022. Applied Soft Computing, 115, p.108182.



• Through a prediction-optimization framework, which was designed for 

auto-discovery of low-carbon cost-effective concrete

AI-assisted design of UHPC
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Input Output

Available data (source of knowledge)

• Concrete design variables

• Concrete properties

Machine learning 

model (prediction)

Intelligent 

optimization

Concrete

design variables

Concrete

properties

Target  

properties

Optimal  

design

Prediction-optimization framework

Mahjoubi, S., Barhemat, R., Meng, W. and Bao, Y., 2023. Resources, 

Conservation and Recycling, 189, p.106741.



Cost

Carbon 
footprint

Embodied 
energy

Durability

Ductility

Compressive 
strength
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Multi-objective optimization

Many objective 

optimization

Machine 

learning
Machine 

learning

Machine 

learning
Estimation based 

on the inventory

Material cost 

of a unit mass 

Estimation based 

on the inventory

• How to simultaneously optimize environmental, economical, mechanical, 

and durability properties?

Mahjoubi, S., Barhemat, R., Guo, P., Meng, W., & Bao, Y. (2021). Journal of Cleaner Production. 

Mahjoubi, S., Meng, W., & Bao, Y. (2023). Resources, Conservation and Recycling.
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Method

Concrete 

design variables

Cement content

SCM contents

Fiber content

...

Machine learning

Inventory data

Concrete 

properties

Material properties

Compressive 

strength

Ductility

Mini-slump flow

Porosity

Environmental and 

economic properties

Carbon footprint

Cost

Material type

Cement type
...

Fiber type

Mixture variables

Others

Age

Curing scheme

...

Tensile strength

Define 

constraints

Design objectivesOptimal design

Optimization 

algorithm



• Search for the optimal solution through minimizing the objective function 

defined based on the design objective

22

Evolutionary optimization algorithms

Objective function



Example: AI-assisted design of green UHPC

• The following types of materials are available 

✓ Portland cement, Class C fly ash, silica fume, slag, rice husk, oil tailing powder, 

limestone, waste glass, waste concrete, quartz powder, quartz sand, river sand, 

masonry sand, oil tailing aggregate, straight steel fibers, superplasticizer, water

• Design constrains

✓ Mini-slump flow ≥ 260 mm

✓ 28-day compressive strength ≥ 120 MPa

• Design objectives

✓ F1: Unit cost (minimization)

✓ F2: Unit carbon footprint (minimization)

✓ F3: Compressive strength (maximization)

Existing data

Machine learning 

model

Design 

variables

Key 

properties

Design 

constraints

Optimal 

designs
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Multiple-criterion decision making

• Reduce the cost by 65%, and reduce the carbon footprint by 56%

AI UHPC-1 UHPC-2 UHPC-3

Cost ($/m3) 420 1,204 1,134 942

Carbon footprint (kg/m3) 582 1,312 1,128 773

Compressive strength (MPa) 156 154 154 157

Optimal solution

Other solutions 

F1

($/m3)

F2

(kg/m3)

F3

(MPa)

0 0 0

700 850 200

420

156

582

F1: Unit cost

F2: Unit carbon footprint

F3: Compressive strength
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Problem: The applicability of ML models is limited

• There are different solid wastes in different locations

✓ Various machine learning predictive models  

• Different wastes have different properties 

✓ Particle size distribution, chemical composition

• The different physicochemical properties are not considered

✓ Materials are designated with their engineering names (e.g., fly ash, slag, etc.)

25
Mahjoubi, S, Barhemat, R., Meng, W., and Bao, Y., 2023. Resources, 

Conservation and Recycling, 90, p.106870.



Method: Create a language to describe wastes

26
Mahjoubi, S, Barhemat, R., Meng, W., and Bao, Y., 2023. Resources, 

Conservation and Recycling, 90, p.106870.



Example of the artificial language

• Various symbols

• Sentence-like elements

• Essay: A sequence of sentences: [A][B][C][S1][S2]…[Sn]

27

Symbol Meaning

H2O, SiO2, … Water, Silicon dioxide, …

SP Superplasticizer

SF Steel fiber

d Days

Sentence Meaning

A: {curing time}† d Curing time

B: SP = {superplasticizer content} Admixtures content

C: SF = {steel fiber content} Fiber content

S: {mix proportion}, D10: {d10}, D50: {d50}, D90: 

{d90}, CC1: {1st chemical composition}, …

Mix proportion, particle size distribution, and 

chemical composition of an ingredient

Mahjoubi, S, Barhemat, R., Meng, W., and Bao, Y., 2023. Resources, 

Conservation and Recycling, 90, p.106870.



Perform deep learning to predict concrete properties
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MAE (MPa) RMSE (MPa) R2(1)

Training 3.06 5.08 0.99

Validation 5.79 7.46 0.97

Test 6.31 9.15 0.96

𝑀𝐴𝐸 𝑃, 𝐴 = ෍

𝑖=1

𝑛

|𝑝𝑖 − 𝑎𝑖|2

𝑅2 𝑃, 𝐴 = 1 −
σ𝑖=1

𝑛 (𝑝𝑖 − 𝑎𝑖)2

σ𝑖=1
𝑛 [𝑎𝑖 − 𝑚𝑒𝑎𝑛 𝑎𝑖 ]2

Mahjoubi, S, Barhemat, R., Meng, W., and Bao, Y., 2023. Resources, 

Conservation and Recycling, 90, p.106870.



• Evaluate the interactions between different physicochemical properties

Investigate chemical reactions
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Most significant interactions

(1) CaO – Al2O3 interaction:

(2) CaO – SiO2 interaction:

C3A + 3CSH2 + 26H ⇒ C6AS3H32

C3A + CH + 21H ⇒ C4AH22

C3AF + 4CH + 22H ⇒ C4AH13 + C4FH13

CA + 3CSH2 + 26H ⇒ C6AS3H32

C3S + 3 − x + y  H ⇒ CxSHy + 3 − x  Ca(OH)2

C2S + 2 − x + y  H ⇒ CxSHy + 2 − x  Ca(OH)2

C = CaO

A = Al2O3

S = SiO2

S = SO3

F = Fe2O3

H = H2O

𝐹 𝑥, 𝑦 =
𝑓 𝑥, 𝑦 − 𝑓 𝑥 − 𝑓 𝑦

max (𝐹)

Mahjoubi, S, Barhemat, R., Meng, W., and Bao, Y., 2023. Resources, 

Conservation and Recycling, 90, p.106870.



• The machine learning-based prediction-optimization framework can 

predict the key properties and optimize the design of green UHPC

• The AI data collector and generator are effective in producing and 

updating datasets

• The AI data processor facilitates data cleaning and variable selection 

• The AI auto-learner enables automatic generation of machine learning 

models with high accuracy and high generalization performance 

• The AI optimizer is effective in multi-objective optimization of design

• The artificial language enables the consideration of physicochemical 

properties of various solid wastes, facilitate the design of concrete with 

various solid wastes and high performance

• It is possible to use the AI methods to investigate the physicochemical 

reactions of new concrete systems

30

Conclusions
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