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Design of UHPC: Current challenges

* Particle packing model-based method
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* Performance-based method Select raw materials
2
v’ Achieve the optimal performance Optimize binder combination
based on step-by-step testing ¥
_ _ _ Determine water-to-binder ratio
v’ Extensive experimental testing (costly, 3
time consuming, and labor intensive) Determine sand degradation
2 2
It is important to develop more efficient and Determine Sang'to'b'”der ratio

effective methods to design UHPC o
Determine fiber volume

Du, J., Meng, W., Khayat, K.H., et al., 2021. New development of ultra-high-

performance concrete (UHPC). Composites Part B: Engineering, 224, p.109220. STEVENS INSTITUTE of TECHNOLOGY 2



Al-assisted design of UHPC

° Through a prediction-optimization framework, which was designed for
auto-discovery of low-carbon cost-effective UHPC

Available data (source of knowledge)
« Concrete design variables
» Concrete properties

Input ‘ Output
Concrete | :( Machine learning R Concrete
design variables | L model (prediction) properties

Target :( Intelligent ] R Optimal

properties L optimization J design

Prediction-optimization framework

Mahjoubi, S., Barhemat, R., Meng, W. and Bao, Y., 2023. Al-guided auto-discovery of low-carbon cost-effective ultra-high performance
concrete (UHPC). Resources, Conservation and Recycling, 189, p.106741.
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How do machine learning models predict UHPC
properties?

« Machine learning models are trained by using existing data
v" The prediction of UHPC properties is a typical regression task
v High-fidelity machine learning models are required for the regression task

Material design variables < Link > Material properties
(e.g., water-to-cement ratio, (e.g., compressive strength,
sand-to-cement ratio, type Machine tensile strength, flowability,
of fibers, fiber content, etc.) learning ductility, porosity, etc.)

[
»

[

»

2D (curve fitting) 3D (surface fitting)

Linear regression

!

Nonlinear
regression

The real problem is
a high-dimensional
(nD) problem.

Compressive strength
(MPa)
Compressive strength
(MPa)

[
|

Water-to-cement ratio Water-to-cement ratio
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What data are used to train the models?

« Design variables and key properties of UHPC

Table 5 Proportioning of the designed UHPC mixtures (unit: kg/m™)

Code Cemen SF FAC GGBS Quartz sand Fine sand Sand A Sand B HRWR  Total water  Steel fibers
Ref. 712 231 - - 1020 211 - - 6.5 164 156
GS0SF5 548 42 - 535 - Table 6 Characteristics of the UHPC mixtures
G30 593 - - 346 I Code Ref. G50SF5 G350 FAC40SF5 FACED
FAC405F5 663 42 367 - - Flow time (s) 12 30 37 39 46
EFACED 486 _ 556 - _ HRWR demand (%) 0.69 1.38 1.06 101 0.51
Mini slump flow (mm) 275 280 285 285 285
Yield stress (Pa) 39 35 37 34 30
Plastic viscosity (Pa s) 23 39 50 44 29
. . . Air content (%) 4 5 5 4 35
Mixture deS|gn variables Specific gravity 247 245 243 244 241
. . Initial setting (h) 5 2 6 10 6
* Types of |ngred|ents Final setting (h) 10 6 12 15 12
1 days—standard curing (MPa) 53 52 64 65 69
° M ixture Variables 28 days—standard curing (MPa) 135 125 124 124 120
28 days—heat curing (MPa) 202 178 170 168 136
- Splitting tensile strength (MPa) 12 14 12 12 10
¢ ProceSSIng SChemeS Unit costs normalize by compressive strength ($/m /MPa) 14.8 4.7 4.2 4.3 3is
Modus of elasticity (GPa) 53 50 50 52 46
Flexural performance
First cracking load (kN) 22 21 24 21 20
Peak load (kN) 21 29 33 31 28
&, (mm) 0.092 0.085 0.080 0.093 0.089
. 3, (mm) 0.701 0.690 0.653 0.820 0.635
U H PC propertles ll-’eak strength (MPa) 19.7 20.2 22.8 21.3 20.1
; TI150 (Jy 40.4 48.8 515 51.1 494
* Fresh propertles - | Surface conductivity (kQ cm) 45 30 28 38 34
Durability factor (%) 90.8 99.8 99.8 99.7 99.7
* Hardened prope rties Autogenous shrinkage at 28 days (um/m) 731 602 253 545 503
Drying shrinkage at 98 days (pum/m) 600 430 56 466 500
Meng, W., Valipour, M. and Khayat, K.H., 2017. Optimization and performance of cost-
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Challenges of Al-assisted design of UHPC

* Challenges of data (“the source of knowledge™)

v How can we efficiently collect data and update the dataset?

v How can we identify and remove anomalous data?

v How can we select relevant variables from many variables?

* Challenges of machine learning models

v" How can we select or develop the most appropriate machine learning model?

* Challenges of design optimization

v How can we optimize concrete design by considering multiple design objectives?

* Challenges of various wastes

v How can we deal with the large variations in the physical properties and chemical
compositions of wastes?

STEVENS INSTITUTE of TECHNOLOGY 6



Our research (Al designer)

Challenges of data
v’ Self-updatable data collection (Al data collector)
v" Artificial data generation (Al data generator)

v’ Data cleaning and variable selection (Al data processor)

Challenges of machine learning models

v Automatic generation of machine learning model (Al auto-learner)

Challenges of design optimization

v Multi-objective optimization (Al optimizer)

Challenges of various wastes

v Artificial language for data presentation (Al data presenter)

STEVENS INSTITUTE of TECHNOLOGY



Self-updatable Al data collector

- An approach was developed to automatically collect available data from
published documents (e.qg., journal papers, conference proceedings,
reports, etc.)

Automatic information extraction for establishing datasets

B - }Q - - Mixture and -
PDE | properties | - |

Publications Retrieval of Detection of Recognition Self-updateable

in databases documents tables of tables datasets

Low carbon & Multi- Optimal Automated Dl

cost effective € objective @& achine @ machine  _ El‘ta,
UHPC optimization learning model learning pipeline analysts

Designer for material properties

* The collected database can be automatically updated through tracing
and extracting data from new publications.
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Why do we use the Al data collector?

- High efficiency and high accuracy Task:

v" Automate the data collection process Collect 1000 data
(without human intervention, free of Al By human
human errors)

1 hour 1 month
. - ili 35

Self-updatability g ,’_J

v Improve accuracy by increasing the r’gs 30 - o
database size s o-*

S5 25 .

v' Enable the consideration of new £ o

materials (e.g., new solid wastes) o 20 - y
S /

v Enlarge the design space for lower % 15 o

carbon footprint and lower cost .'Dé
10 T T T
2014 2016 2018 2020 2022

Year
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Self-updatability enhances the design capability

* The accuracy increases with time

Compressive strength (MPa)
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* The life-cycle cost and carbon footprint are reduced (large design space)

Cost ($/m?)
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Artificial data generation

Two methods were developed to generate new Lo —
data (Generative Al) )l e i
* Method 1: Use established theories or equations = os O
L 0.7r e RZ *
£y = 6.61n (d—f; Vf) —10.7 U _E

250 500 750 1000
Number of data

where &, Is tensile strain capacity; L; is the fiber length;
d; is the fiber diameter; and V. is the fiber content. R? = Determination of coefficient

i : MAE =M bsolut
- Method 2: Use advanced machine learning ean absolute error
techniques such as generative adversarial
networks (GANSs)

=gl ¢

) :

g | \.\w N AN

Transform an image to the style of Van Gogh'’s starry night paint

Guo, P., Meng, W., Xu, M., Li, V.C. and Bao, Y., 2021. Materials, 14(12), p.3143. STEVENS INSTITUTE of TECHNOLOGY 11



GANSs learn from existing real data

* To generate artificial but reasonable and useful data

T - 65 -

Test data Al data Synthetic data
fraining set M / Discriminator
/ N Real
Random iR / > T {Fa ke
noise -

Generator Fake image

Generative adversarial network

Mahjoubi, S., Barhemat, R., Meng, W. and Bao, Y., 2023. Resources,

Conservation and Recycling, 189, p.106741. STEVENS INSTITUTE of TECHNOLOGY 12



Anomalous data

* Anomalous data can be generated by many 3‘3“;
reasons = o0k
é 025
_ 5 0201
* Anomalous data have different features from 2 oisp
normal data 5 010r
. 0.05F - eQutlier A
* Data are ranked by their normalness through 0.00 bt

Compressive strength (MPa)

Supervised anomaly detection
based on bivariate analysis

supervised or unsupervised learning

Anomaly score Isolation forest
A

Anomalous r
data

Normal data

oner uoneurueuo )

Isolation trees

Unsupervised anomaly detection using isolation forest

Mahjoubi, S., Meng, W. and Bao, Y., 2022. Applied Soft Computing, 115, p.108182. STEVENS INSTITUTE of TECHNOLOGY 13



Removing anomalous data improves accuracy

* The data-driven identification of anomalous data may treat normal data
as anomalous data

* Contamination ratio (CR) is defined as the percentage of anomalous
data in a dataset

* The optimal contamination ratio is obtained through a parametric
analysis, to minimize the errors (i.e., maximize the accuracy)

0.3
2.;0-2 If CR=0, RMSE=0.056
2 If CR=7.6%. RMSE=0.043
5 0.1 NRMSE (0) = 0.056 1 1
i Y s ittt The minimum error
NRMSE (7.6 %) = 0.043
OO lIO 210 3IO 4I0 50

Contamination ratio (%)

Mahjoubi, S., Meng, W. and Bao, Y., 2022. Applied Soft Computing, 115, p.108182. STEVENS INSTITUTE of TECHNOLOGY 14



Variable selection

* How to select appropriate design variables?

v’ Problem: When extra variables are included, the machine learning model will
be complex and inaccurate. When the necessary variables are not included,

the machine learning model will be inaccurate too.
v’ Criteria:
1. The design variables are independent of each other (low correlation)

2. The design variables are highly correlated to the concerned concrete properties

1
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RMSE (24) =3.22

RMSE (21) =3.13
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Number of input variables

Variable selection based on correlation (mutual information and univariate linear regression)

Mahjoubi, S., Meng, W. and Bao, Y., 2022. Applied Soft Computing, 115, p.108182.
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Representative types of machine learning models

* Individual models

v’ Linear regression
Symbolic regression
K-nearest neighbor
Artificial neural network

Support vector machine

N N X X

Decision tree

* Ensemble models
v' XGBoost
v LightGBM
v Gradient boosting

v Random forest

Different models have different performance,

Input layer —— Hidden layers — Output layer
wic ,):. o «
) 0.4 0 N RN
slc N f
: : A
- o Decision tree
Vi \y/c < 024 = Root node
: il il Yes [ No
Artificial neural network <ge<032 > <#c<038> = Tnterior nodes
Yes | No Yes | No
l < ,///Y\\\—n
fes fez fs  <5lc<046 >
$Yes T No
fea fes Leaf nodes

Heterogeneous ensemble |-

Homogeneous ensemble |-

=) .
g K-nearest neighbor [
D

ED Gaussian process -
£

£ Decision trees |-
)

Qo .

.= Support vector machine -
5

<

S Artificial neural network [

Symbolic regression [

depending on the specific problem.

Mahjoubi, S., Meng, W. and Bao, Y., 2022. Applied Soft Computing, 115, p.108182.
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Automated machine learning

* Automates the development of high-fidelity machine learning models
* The machine learning model development tasks:

v' Model selection and combination

v Hyperparameter optimization Different types of models are combined

_ L to achieve high accuracy.
v Model complexity minimization

Current practice Auto-tune machine learning
Raw data
Raw data Normalization ‘

Data | ML selection

processing and control

Train an ML v
model High-fidelity Train and
— L
model validation

Mahjoubi, S., Meng, W. and Bao, Y., 2022. Applied Soft Computing, 115, p.108182. STEVENS INSTITUTE of TECHNOLOGY 17



Auto-tune machine learning shows high accuracy

* The Taylor diagram compares the accuracy of different machine learning
methods

No. Machine learning method
Ridge

Passive aggressive

40} ”
35.
30
25
20/
154
10]s

Multi-layer perceptron

Q0 000000
O OO~ N kb —

Support vector machine

Partial least squares

Random forest
LightGBM

Azure Microsoft

0 |IN |o (o | Jw ([N |-

0 S5 10 15 20 25 30 35 40
Standard deviation (MPa)

The proposed method had the lowest errors.

Mahjoubi, S., Meng, W. and Bao, Y., 2022. Applied Soft Computing, 115, p.108182. STEVENS INSTITUTE of TECHNOLOGY 18



Al-assisted design of UHPC

° Through a prediction-optimization framework, which was designed for
auto-discovery of low-carbon cost-effective concrete

Available data (source of knowledge)
« Concrete design variables
» Concrete properties

Input ‘ Output
4
Concrete | ,| Machine learning R Concrete
design variables | L model (prediction) properties
( - \ -
Target , Intelligent R Optimal
properties L optimization ) design

Prediction-optimization framework

Mahjoubi, S., Barhemat, R., Meng, W. and Bao, Y., 2023. Resources,

Conservation and Recycling, 189, p.106741. STEVENS INSTITUTE of TECHNOLOGY 19



Multi-objective optimization
* How to simultaneously optimize environmental, economical, mechanical,

and durability properties?
Material cost

of a unit mass
Machine :D Cost Estimation based
learning -, on the inventory

Compressive Carbon
strength footprint
An inventory
Many obijective was developed
optimization @
Ductility > < Embodied >
energy

Machine :D
learning -,

Estimation based

Durabilit :
4 on the inventory

Machine ED<

learning

Mahjoubi, S., Barhemat, R., Guo, P., Meng, W., & Bao, Y. (2021). Journal of Cleaner Production.
Mahjoubi, S., Meng, W., & Bao, Y. (2023). Resources, Conservation and Recycling. STEVENS INSTITUTE of TECHNOLOGY 20



Method

Optimal design

Concrete
design variables

Optimization

constraints

algorithm

[ Material type ]

Cement type

Fiber type

[ Mixture variables ]

Cement content
SCM contents

Fiber content

A 4

Machine learning

Design objectives 41

Concrete
properties

Material properties

[ Others }
Age

Curing scheme

\ 4

Inventory data

A 4

Mini-slump flow

Compressive
strength

Tensile strength
Ductility

Porosity

]

I Environmental and
Leconomic properties

Carbon footprint
Cost

STEVENS INSTITUTE of TECHNOLOGY 21



Evolutionary optimization algorithms

e Search for the optimal solution through minimizing the objective function
defined based on the design objective

Objective function

STEVENS INSTITUTE of TECHNOLOGY 22



Example: Al-assisted design of green UHPC

* The following types of materials are available

v Portland cement, Class C fly ash, silica fume, slag, rice husk, oil tailing powder,
limestone, waste glass, waste concrete, quartz powder, quartz sand, river sand,

masonry sand, oil tailing aggregate, straight steel fibers, superplasticizer, water

o Design constrains Ssting dam
v Mini-slump flow = 260 mm ‘ T
4 )
v’ 28-day compressive strength = 120 MPa Machine learning
model
» » » \ )
* Design objectives . l )
v’ F1: Unit cost (minimization) [ vzr?z;aglgs > pro};gtiesJ
J \_

v’ F2: Unit carbon footprint (minimization)

A

v' F3: Compressive strength (maximization) y
[ Optimal ] | Design ]

designs constraints

STEVENS INSTITUTE of TECHNOLOGY 23



Multiple-criterion decision making

* Reduce the cost by 65%, and reduce the carbon footprint by 56%

700 850| 200
| ‘ 1/5@ — Optimal solution
| " Other solutions
420, 582~
!
| | F1: Unit cost
‘ F2: Unit carbon footprint
0| 0 0 F3: Compressive strength
F1 F2 F3
($/m3) (kg/m?3) (MPa)
Al UHPC-1 | UHPC-2 | UHPC-3
Cost ($/m3) 420 1,204 1,134 942
Carbon footprint (kg/m?3) 582 1,312 1,128 773
Compressive strength (MPa) 156 154 154 157

STEVENS INSTITUTE of TECHNOLOGY 24




Problem: The applicability of ML models is limited

* There are different solid wastes in different locations

v’ Various machine learning predictive models

« Different wastes have different properties

v’ Particle size distribution, chemical composition

o The different physicochemical properties are not considered

v’ Materials are designated with their engineering names (e.g., fly ash, slag, etc.)

i . 100
Chemical differences Class F Class C —=—O0PC
90 1| —e—Chinese FA (Class F) |
" - _| | —%—Indian FA (Class F)
Si0, + AlLO3 + Fe>O3, minimum % 70.00 50.00 i
: __ 70
SO;, maximum % 5.00 5.00 B
Moisture content, maximum % 3.00 3.00 £ s0-
3 ]
LOI, maximum % 6.00 6.00 S 40+
Available alkalis (as Na,O), maximum % 1.50 1.50 30
20 -
Source: ASTM standard C 618 — 95; composition requirement 10
for fly ash classes 04 ‘ :
1 10 100
Particle Diameter (um)
Mahjoubi, S, Barhemat, R., Meng, W., and Bao, Y., 2023. Resources,
STEVENS INSTITUTE of TECHNOLOGY 25
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Method: Create a language to describe wastes

Current practice Proposed method
Mixture Chemical Particle size Curine time Specimen
proportion composition )| distribution 8 geometry
f — N
Artificial J A sentence describes a raw ingredient
| language | U An essay describes the mixture design
Numerical dataset l
.. A Unique sequence of characters = Tokens
% Text mining d Output = Frequency of tokens

Numerical dataset

Physiochemical

information Text mining

l Discovery of l Material property _
chemical reactions h prediction - Deep learning

Mabhjoubi, S, Barhemat, R., Meng, W., and Bao, Y., 2023. Resources,

Conservation and Recycling, 90, p.106870. STEVENS INSTITUTE of TECHNOLOGY 26



Example of the artificial language

* Various symbols Symbol Meaning
H20, SiO2, ... Water, Silicon dioxide, ...
SP Superplasticizer
SF Steel fiber
d Days
* Sentence-like elements
Sentence Meaning
A: {curing time}f d Curing time

B: SP = {superplasticizer content}

Admixtures content

C: SF = {steel fiber content}

Fiber content

S: {mix proportion}, D10: {d10}, D50: {d50}, D90:
{d90}, CC1: {1st chemical composition}, ...

Mix proportion, particle size distribution, and
chemical composition of an ingredient

° Essay: A sequence of sentences: [A][B][C][S1][S2]...[Sn]

Output: 91.2 MPa (compressive strength)

Mabhjoubi, S, Barhemat, R., Meng, W., and Bao, Y., 2023. Resources,

Conservation and Recycling, 90, p.106870.

npul [60AI[S.30:SP][2:58:SF][416.00,d10:2.77,d50:11.66,d90:44.37,5102:21.16,Al203:6.04,Fe203
BHISIS 08 2I88ICa0ES0EIVG OB N G20 0I0EIK200I5] [ S2][S3][S4]. . [SnI=[AIBI[S1][S2]....[Sn]

STEVENS INSTITUTE of TECHNOLOGY




Perform deep learning to predict concrete properties

Frequency counts Token embedding

Neural search by Autokeras

g Continuous P — Main components -
Rireraiakens 0.0110.06 | Gaussian Artificial neural Bayesian ||
| process network optimization ||
0.12[0.05 _— =
Sequence of operations
Feahiite | 0 0 [ 0 0 I e i s s i e s Yo s _—
extraction I Embedding HConvolutionalN Flatten N Dense I
Bl B Y == =
Discrete | () i
2
- Model
Embedding size TEMIIg
200 . . .
* Validstiorset 2 MAE (MPa) RMSE (MPa) R2(1)
T 0l ?ainintg set > Training 3.06 5.08 0.99
e Jest se
= Validation 5.79 7.46 0.97
= Tk | Test 6.31 9.15 0.96
g n
2
: _ MAE(P,4) = ) |p; - a
= i=1
; - 1 1 1 7'1= (p - Cl)z
% S0 100 150 200 R2(P,A) =1 — oyt >
Test results of CS (MPa) i=1[ai - mean(ai)]

Mabhjoubi, S, Barhemat, R., Meng, W., and Bao, Y., 2023. Resources,
Conservation and Recycling, 90, p.106870.
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Investigate chemical reactions

* Evaluate the interactions between different physicochemical properties

fOy) = f(x) - f(y)l
B max (F)

F(x,y)

- Most significant interactions

(2) CaO - SiO, interaction:
C3S+ (3 —x+y) H= CSHy + (3 — x) Ca(OH),

T
<
[\

. 1.0 2 (1) CaO —Al,O4 interaction:

5) @)

5 = CsA + 3CSH, + 26H = C4AS;Hs, C=Ca0
- 08 & A =Al,0
S 3 CsA + CH + 21H = C,AH DA
2 a 3 40822 S = SiO,
g 0.6 § CsAF + 4CH + 22H = C,AH,5 + C,FH,;s S =SO,
Z g _ _ F = Fe,0,
= - 0.4 2 2

5 =)

Q a

y— =

3 2

o =z

C2S + (2 —x+y) H= C,SH, + (2 — x) Ca(OH),

,...
<
o

Chemical compositions of cement

Mabhjoubi, S, Barhemat, R., Meng, W., and Bao, Y., 2023. Resources,

Conservation and Recycling, 90, p.106870. STEVENS INSTITUTE of TECHNOLOGY 29



Conclusions

The machine learning-based prediction-optimization framework can
predict the key properties and optimize the design of green UHPC

The Al data collector and generator are effective in producing and
updating datasets

The Al data processor facilitates data cleaning and variable selection

The Al auto-learner enables automatic generation of machine learning
models with high accuracy and high generalization performance

The Al optimizer is effective in multi-objective optimization of design

The artificial language enables the consideration of physicochemical
properties of various solid wastes, facilitate the design of concrete with
various solid wastes and high performance

It is possible to use the Al methods to investigate the physicochemical
reactions of new concrete systems

STEVENS INSTITUTE of TECHNOLOGY 30
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