MOMENT-ROTATION RESPONSE OF REINFORCED UHPC COLUMNS
UNDER VARYING AXIAL LOADS
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ULTRA-HIGH PERFORMANCE CONCRETE (UHPC) AND HIGH PERFORMANCE
FIBER REINFORCED CEMENTITIOUS COMPOSITES (HPFRCCS)

What we know of UHPCs:

Reinforced Concrete

o Enhanced mechanical performance ,

o Improved damage tolerance
o High durability
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(Moreno et al., 2014, Jen et al.,
2014: Wille et al.. 2010)
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GROWTH OF UHPCs: EXAMPLE IN BRIDGES
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RESEARCH QUESTIONS AND OBJECTIVES

Research questions:

. What gaps exist to characterize system
level behavior of HPFRCC systems?

¢ T %
. How do HPFRCC structural systems
compare to traditional concrete systems? i‘ ‘i‘ ‘i
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REPRESENTATIVE EXPERIMENTAL SEISMIC RESEARCH

1. High deformation capacity in

beams and columns (Frank et al.
2015, Wu et al. 2017).

High Shear and Bending
deformations (zheng, 2016).
Reduce transverse

reinforcement requirement
(Lequesne, 2010).

4, Structural fuse (Oslen, 2011).
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DESIGN ILLUSTRATION OF 4 STORY FRAME

(b) HPFRCC Frame

(a) RC Frame
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N

| mQtSIQb Haselton et al. (2007); Tarig et al. (2021)




SEISMIC SYSTEM ANALYSIS

(a) RC Frame (b) HPFRCC Frame
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When engineered for strong-column weak beam behavior, structure
was 38% less likely to collapse compared to R/C using IDA
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RESEARCH QUESTIONS AND OBJECTIVES

Research questions:

. What gaps exist to characterize system
level behavior of HPFRCC systems?

¢ T %
. How do HPFRCC structural systems
compare to traditional concrete systems? i‘ ‘i‘ ‘i
mr

Research objectives:
. . mr 7
. ldentify factors that influence structural

response of columns ‘JMJHWMMMWM

. Develop tools to efficiently simulate
response
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NUMERICAL MODELING OF COLUMNS
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MOMENT-DRIFT RESPONSE
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MECHANICS AFFECTING DRIFT CAPACITY
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 Increase In tensile strength — high bond stresses — more concentrated
plastic strain distribution
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COMBINED EFFECTS OF p, f;, AND AXIAL LOAD
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 Drift capacity is a function of relative tensile strengths
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« Higher relative reinforcement ratios — higher bond stress demands — higher plastic stain

distributions — higher drift capacities

* Increase in axial load ratio (ALR) increases and then decreases drift capacity

I~

matslab

o NJLT



FAILURE MECHANISMS AND DAMAGE PATTERNS

0% ALR 10% ALR 20% ALR

N

X Rebar fracture

 Increase in axial load — smaller damage area and drift capacity
 Failure mechanism shift from tension to compression between 10%-20% ALR

1| Matslab 13 NI




STRUCTURAL MODELING OF HPFRCC SYSTEMS

Characterize component level
behavior and damage patterns
to develop accurate expressions
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EXISTING PLASTIC HINGE LENGTH EXPRESSIONS
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« Existing RC expression significantly over predicts simulated values
« HPFRCC expression diverges as axial load increases
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COMPARISON TO EXPERIMENTAL RESPONSES
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* Numerically calibrated expression reasonably predicts deformation capacity
« Existing RC expressions do not accurately predict deformation capacity
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STRUCTURAL MODELING OF HPFRCC SYSTEMS

Consider architype
structures using
HPFRCCs and RC

Model system level
behavior
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RC systems
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KEY TAKEAWAYS

HPFRCC component drift capacity Is a
balance of reinforcement and tensile
strength

Increases in axial load result in smaller
damage areas and drift capacity

Big picture:

Systematically characterizing component o

response to develop accurate tools for
nonlinear time history analysis

Evaluate and compare HPFRCC and RC
system level responses

Column experiments
in 2024
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