MOMENT-ROTATION RESPONSE OF REINFORCED UHPC COLUMNS UNDER VARYING AXIAL LOADS

Joseph A. Almeida, Ronit Sthapit, Matthew J. Bandelt Ph.D. P.E.

J.A. Reif, Jr., Department of Civil and Environmental Engineering New Jersey Institute of Technology

ACI Convention – Fall 2023 Innovative Applications of UHPC in Columns, Part 1 of 2 Boston, Massachusetts 29 October 2023

ULTRA-HIGH PERFORMANCE CONCRETE (UHPC) AND HIGH PERFORMANCE FIBER REINFORCED CEMENTITIOUS COMPOSITES (HPFRCCS)

GROWTH OF UHPCS: EXAMPLE IN BRIDGES

3 NJIT

RESEARCH QUESTIONS AND OBJECTIVES

Research questions:

- What gaps exist to characterize system
 level behavior of HPFRCC systems?
- How do HPFRCC structural systems
 compare to traditional concrete systems?

REPRESENTATIVE EXPERIMENTAL SEISMIC RESEARCH

- High deformation capacity in beams and columns (Frank et al. 2015, Wu et al. 2017).
- 2. High Shear and Bending deformations (Zheng, 2016).
- 3. Reduce transverse

reinforcement requirement

(Lequesne, 2010).

4. Structural fuse (Oslen, 2011).

DESIGN ILLUSTRATION OF 4 STORY FRAME

(a) RC Frame

Code confirming R/C structure

(b) HPFRCC Frame

Replace concrete with HPFRCC in beam regions. Resize members to maintain strong-column weak-beam.

SEISMIC SYSTEM ANALYSIS

 When engineered for strong-column weak beam behavior, structure was 38% less likely to collapse compared to R/C using IDA

RESEARCH QUESTIONS AND OBJECTIVES

Research questions:

- What gaps exist to characterize system
 level behavior of HPFRCC systems?
- How do HPFRCC structural systems compare to traditional concrete systems?

Research objectives:

- Identify factors that influence structural response of columns
- Develop tools to efficiently simulate response

NUMERICAL MODELING OF COLUMNS

MOMENT-DRIFT RESPONSE

MECHANICS AFFECTING DRIFT CAPACITY

 Increase in tensile strength → high bond stresses → more concentrated plastic strain distribution

Combined Effects of ρ , f_t , and Axial Load

- Drift capacity is a function of **relative tensile strengths**
- Higher relative reinforcement ratios → higher bond stress demands → higher plastic stain distributions → higher drift capacities
- Increase in axial load ratio (ALR) increases and then decreases drift capacity

FAILURE MECHANISMS AND DAMAGE PATTERNS

- Increase in axial load → smaller damage area and drift capacity
- Failure mechanism shift from tension to compression between 10%-20% ALR

STRUCTURAL MODELING OF HPFRCC SYSTEMS

Characterize component level behavior and damage patterns to develop accurate expressions

Accurately model component level response

EXISTING PLASTIC HINGE LENGTH EXPRESSIONS

- Existing RC expression significantly over predicts simulated values
- HPFRCC expression diverges as axial load increases

COMPARISON TO EXPERIMENTAL RESPONSES

Numerically calibrated expression reasonably predicts deformation capacity

16

• Existing RC expressions do not accurately predict deformation capacity

STRUCTURAL MODELING OF HPFRCC SYSTEMS

KEY TAKEAWAYS

- HPFRCC component drift capacity is a balance of reinforcement and tensile strength
- Increases in axial load result in smaller damage areas and drift capacity

Big picture:

- Systematically characterizing component response to develop accurate tools for nonlinear time history analysis
- Evaluate and compare HPFRCC and RC system level responses

Column experiments in 2024

THANK YOU! bandelt@njit.edu

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No. CMMI-2141955. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

