

SOLUTIONS FOR THE BUILT WORLD

Probabilistic Service Life Modeling Implemented Through WJE CASLE

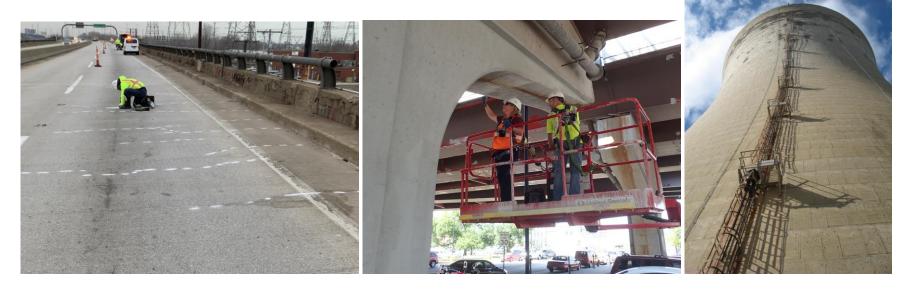
www.wje.com

Marwa Abdelrahman & John Lawler

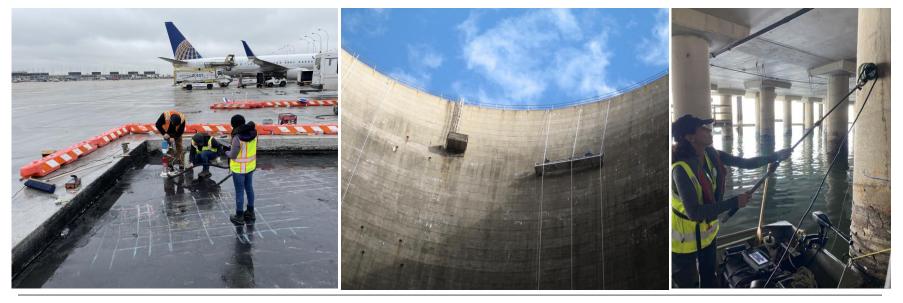
ACI Fall Convention 2023

Corrosion Assessment and Service Life Evaluation

- In-house service life modeling software
- Probabilistic Modeling
- Existing and New Structures



Page 2


Corrosion Assessment and Service Life Evaluation

Developed/adapted per project needs

• We continuously refine our knowledge through field investigations and evaluation of existing infrastructure

Corrosion Assessment and Service Life Evaluation

- A customizable approach to consider the circumstances and exposure conditions unique to the modeled structure
 - Cracking
 - Sealer and coatings
 - Changing exposure with time
 - Multilayer systems (overlays):
 - Concrete overlays
 - Thin polymer overlay
 - Premixed polymer concrete overlay

- Foundation of CASLE:
 - fib Bulletin No. 34 Model Code for Service Life Design
 - Concrete Society Technical Report No. 61-Enhancing reinforced concrete durability: Guidance on selecting measures for minimizing risk of corrosion of reinforcement in concrete
 - ACI 365.1R-00 Service-Life Prediction— State-of-the-Art Report
 - Life-365 service life prediction model
 - Others

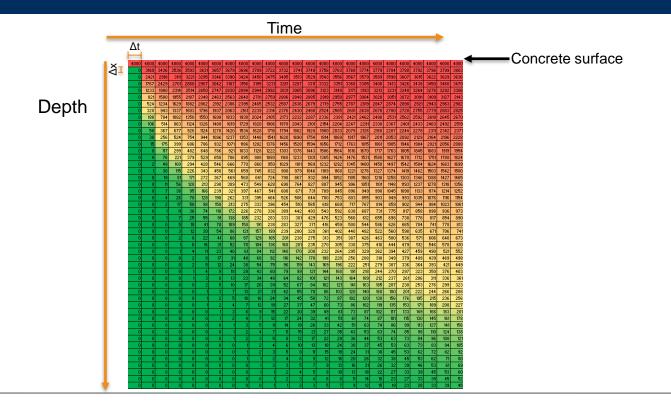
Corrosion Assessment and Service Life Evaluation

- New Structures
- What is modeled: Probability of exceeding service life limit versus time
- Assumed: cover, rebar, exposure (more conservative)
- Tested: concrete performance

- Existing Structures
- What is modeled: Level of corrosion-related deterioration versus time
- Tested:
 - Core samples (chloride profile for concrete performance & exposure)
 - GPR survey (cover)
 - Damage (model verification)

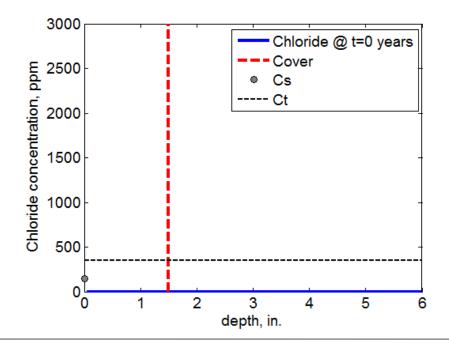
Methodology

Chloride –Induced corrosion

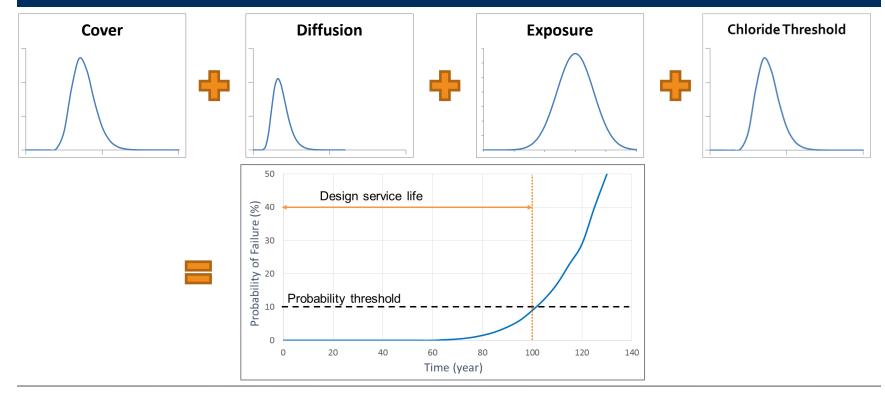

Modeling Chloride Transport

- Mathematical representation of transport:
 - Finite difference solution

Fickean Diffusion (Apparent Diffusion)

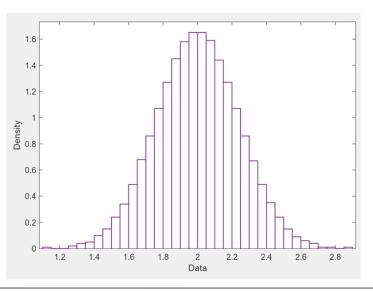

$$\frac{dC}{dt} = D_a \times \frac{d^2 C}{dx^2}$$

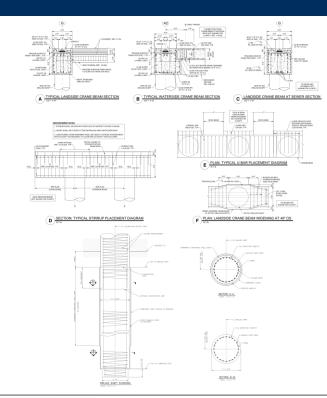
Modeling Chloride Transport

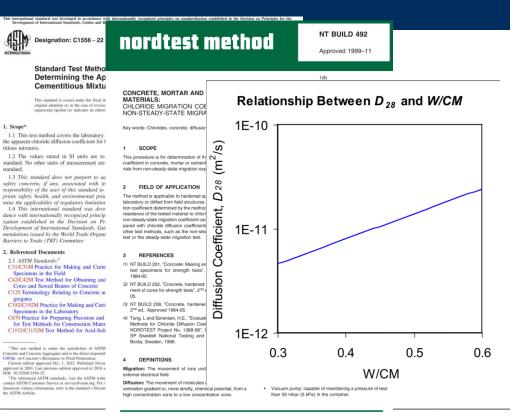


Corrosion Initiation

Initiation when concentration exceeds threshold




Page 11


Inputs: • Cover

Inputs:

- Diffusion coefficient
 - Lab testing
 - Literature

- Inputs:
 - Exposure
 - Historical data
 - Testing samples from adjacent structures

Inputs:

- Chloride Threshold:
 - Type of Reinforcement
 - Cement and SCM content
 - Chloride threshold distributions are derived based on literature and WJE's previous projects

Modeling Cases

Inputs

- Three cases
- Three mix design
- Two types of reinforcing steel

CONVENTION	

28-Day

90-Day

28-Dav

56-Day

90-Day

28-Day

90-Day

28-Dav

90-Day

Initial Absorption

Secondary Absorption ASTM C1760 – Bulk Electrical Conductivity (mS/m)

ASTM C642 – Volume of Permeable Voids (%)

ASTM C1585 – Capillary Absorption (mm/s^{1/2})

ASTM C1556 – Apparent Diffusion Coefficient (×10⁻¹² m²/s)

IT Build 492 – Non-Steady-State Migration Coefficient (×10⁻¹² m²/s)

STADIUM[®] IDC OH⁻ Diffusion Coefficient (×10⁻¹¹ m²/s)

STADIUM[®] MTC Permeability (×10⁻²² m²)

ACI Convention Fall 2023 - Boston, MA Comparison of Corrosion Service Life Models Modeling Parameters

> 11.4 11.8 12.2 1.2 2.1

4.6

11.0

9.1 2.5 3.9

8.3 2.3 2.4 3.6

14.0

17.47 3.11

12.85 2.41

23.26 3.35 15.59

11.50 2.71 5.76

CTRL SF-8 HP-20

8.8 11.8 12.8

0.0004 0.0003 0.0008

0.0003 0.0002 0.0002

3.3

6.5

9.6

4.99

1.91

ACI Convention Fall 2023 - Boston, MA Comparison of Corrosion Service Life Models Modeling Parameters

Page 18

Table 1. Mix Design Proportions

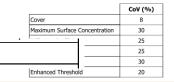
	CTRL	SF-8	Hyaloclastite Pozzolan-20
Cement, Type I/II (lb/yd3)	658	605	526
Silica Fume (lb/yd3)	0	53	0
Hyaloclastite Pozzolan (lb/yd ³)	0	0	132
Fine Aggregate (lb/yd ³)	1279	1263	1273
3/4" Crushed Coarse Aggregate (Ib/yd ³)	1815	1815	1680
Total Water (lb/yd3)	250	250	250
w/cm	0.38	0.38	0.38
Design Air (%)	6	6	6

Table 5. Annual Temperature Profile of Boston (°F)

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual Ave.
29	31	38	48	58	68	73	72	65	55	45	34	51

Table 4. Modeling Cases and Parameters

* Unless otherwise specified, the tests were performed on 28-dav wet-cured samples


Table 3. Laboratory Testing Results

	Case 1	Case 2	Case 3
Location		Boston, MA	
Element	Bridge Deck	Marine Pile	Marine Wall
Thickness/Diameter	8 in	36 in	8 in
Exposure	Dejcina Salt	Cubmoraad	Colach
Confidence		100	vea

Target Initiation Time with 90% Confidence

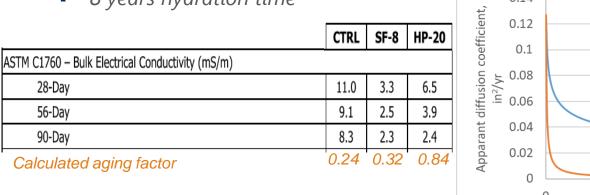
Black Bar Initiation Threshold	735 ppm
Enhanced Initiation Threshold	2500 ppm
Hydration Time	8 years

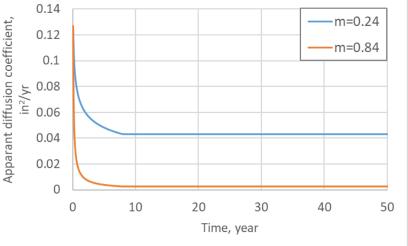
Table 6. Variation	of	Input	Parameters
--------------------	----	-------	------------

Diffusion Coefficient:

ACI Convention Fall 2023 – Boston, MA Comparison of Corrosion Service Life Models Modeling Parameters

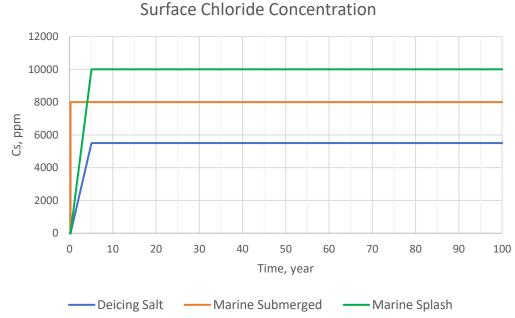
	ASTM C642 – Volume of Permea	ble Voids (%)		CTRL	SF-8	HP-20
	28-Day			8.8	11.8	12.8
ASTM C1556 – Apparent Diffusion Coefficient (×10 ⁻¹² m ² /	s)	4.6	1.2		2	.1
	Initial Absorption			0.0004	0.0003	0.0008
	Secondary Absorption			0.0003	0.0002	0.0002
	ASTM C1760 – Bulk Electrical Co	nductivity (mS/m)				
	28-Day			11.0	3.3	6.5
	56-Day			9.1	2.5	3.9
NT Build 492 – Non-Steady-State Migration Coefficient (×	10 ⁻¹² m ² /s)	14.0	3.6		9	.6
	20-Ddy			1/.4/	3.11	4.99
	90-Day			12.85	2.41	1.91
	STADIUM [®] MTC Permeability (×:	10 ⁻²² m ²)				
	28-Day			23.26	3.35	15.59
	90-Day			11.50	2.71	5.76
	* Unless otherwise specified, the terms Table	sts were performed on 20 4. Modeling Cases a	,	,		

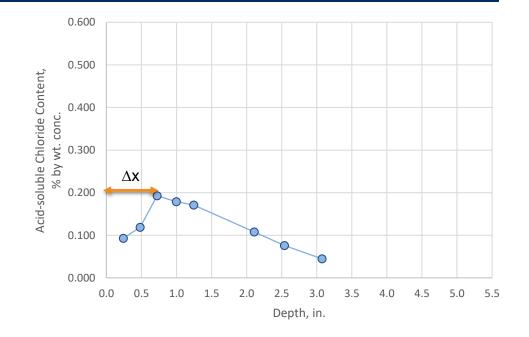

	Case 1	Case 2	Case 3		
Location		Boston, MA			
Element	Bridge Deck	Marine Pile	Marine Wall		
Thickness/Diameter	8 in	36 in	8 in		
Exposure	Deicing Salt	Submerged	Splash		
Target Initiation Time with 90% Confidence	e 100 years				
Cover	2.5 in	3.0 in	3.0 in		
Maximum Surface Concentration	5500 ppm	8000 ppm	10000 ppm		
Black Bar Initiation Threshold	735 ppm				
Enhanced Initiation Threshold	2500 ppm				
Hydration Time	8 years				


Table 3. Laboratory Testing Results

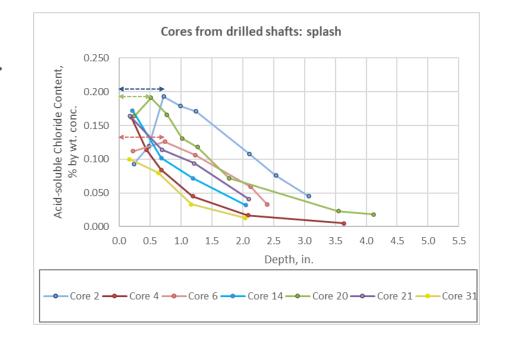
Aging factor

- Provided info Bulk Electrical conductivity
- 8 years hydration time

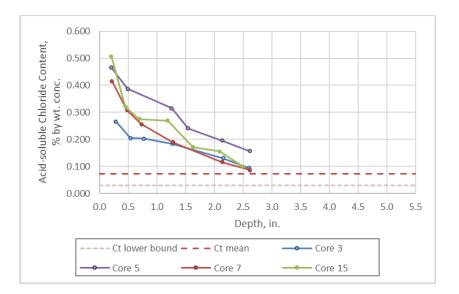

$$D(t,m) = D_{28} \left(\frac{28 \, days}{t}\right)^m$$



• Exposure:


Buildup time

- Transfer Depth:
 - Marine Wall
 - Splash



- Transfer Depth:
 - Marine Wall Splash:
 - Based on Fib 34
 - Beta distribution
 - *m*=0.35 in.
 - s=0.22 in.
 - a= 0.0 in.
 - − *b*=2.0 in.

Transfer Depth: 0 in.

- Bridge Deck Deicing Salt
- Marine Wall Submerged

Modeling Cases

Results

Results

Black bars

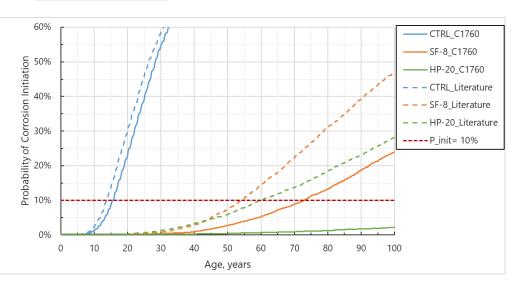
	Initiation time, yr. (10% probability)						
Element/Mix ID	CTRL	SF-8	HP-20				
Bridge Deck - Deicers	16	73	>110				
Pile-Submerged	15	83	>110				
Wall-Splash	13 56 >110						

Enhanced bars

	Initiation time, yr. (10% probability)						
Element/Mix ID	CTRL	SF-8	HP-20				
Bridge Deck - Deicers	48	>110	>110				
Pile-Submerged	41	>110	>110				
Wall-Splash	28 >110 >110						

Discussion – Aging Factor

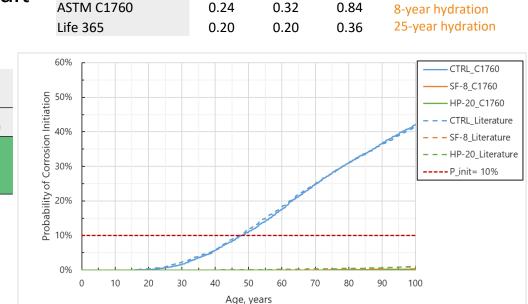
- Provided data- Electrical conductivity
 - 8 years hydration time
- Preferred basis- NT Build 492 or ASTM C1556 at later ages
- Literature (Life 365)
 - 25 years hydration time
 - m = 0.2 + 0.4(% FA/50 + % SG/70).


	CTRL	SF-8	HP-20
ASTM C1760 – Bulk Electrical Conductivity (mS/m)			
28-Day	11.0	3.3	6.5
56-Day	9.1	2.5	3.9
90-Day	8.3	2.3	2.4
Calculated aging factor	0.24	0.32	0.84
Literature (Life 365) estimates	0.20	0.20	0.362

Discussion – Aging Factor

- Bridge Deck Deicing Salt
- Black bar

	Initiation time, yr. (10% probability)						
Aging Factor/Mix ID	CTRL	SF-8	HP-20				
Given (ASTM C1760)	16	73	>110				
Literature (Life 365)	14	54	60				
%Reduction	12%	26%	>50%				


Aging factor source	CTRL	SF-8	HP-20	
Given data	0.24	0.32	0.84	8-year hydration
Literature (Life 365)	0.20	0.20	0.36	25-year hydration

Page 28

Discussion – Aging Factor

- Bridge Deck Deicing salt
- Enhanced bar

SF-8

HP-20

CTRL

Aging factor source

	Initiation time, yr. (10% probability)			
Aging Factor/Mix ID	CTRL	SF-8	HP-20	
Given (ASTM C1760)	48	>110	>110	
Literature (Life 365)	47	>110	>110	
%Reduction	2%	-	-	

Results

Black bars

	Initiation time, yr. (90% probability)			
Element/Mix ID	CTRL	SF-8	HP-20	
Bridge Deck - Deicers	16	73	>110	
Pile-Submerged	15	83	>110	
Wall-Splash	13	56	>110	

Enhanced bars

	Initiation time, yr. (90% probability)			
Element/Mix ID	CTRL	SF-8	HP-20	
Bridge Deck - Deicers	48	>110	>110	
Pile-Submerged	41	>110	>110	
Wall-Splash	28	>110	>110	

Page 30

Discussion – Threshold (black bars)

- Provided values:
 - Average =735 ppm
 - COV=30%

CASLE threshold

Reinforcement Type	Distribution	Parameters (% by wt. cement)		
Uncoated	Beta	lower bound: upper bound: mean: std. deviation:	0.20 2.00 0.48 0.15	

Source: Adapted from (Broomfield 2007), based on data from (Breit 1997)

 $Cement_{eav} := CM \cdot [1 - max[0.010(\%FA - 10), 0] - max[0.005 \cdot (\%SG - 20), 0] - 0.025 \cdot \%SF]$

Where:

CM = weight of total cementitious

%FA = proportion of fly ash (applicable for up to 50%)

%SG = proportion of slag cement (applicable for up to 80%)

%SF = proportion of silica fume (applicable for up to 20%)

Source: Concrete Society Technical Report No. 61

Discussion – Threshold

.

- Marine Pile submerged
- Black bar

-	Given - All mixe	es l	Normal	735	221	L	-	-
	CASLE - CTRL	E	Beta	807	252	2	336	3361
	CASLE - SF-8	E	Beta	644	201	L	268	2685
	CASLE - HP-20	E	Beta	726	227	7	302	3023
yr.	60%							CTRL_Given threshold
, :y)	_		11					SF-8_Given Threshold
			11					
HP-20	nitia		11					CTRL_CASLE
>110	LI 40%		li					– – – SF-8_CASLE
>110	rosi		li -					– – – HP-20_CASLE
>110	Jo 30% -		i i					P_init= 10%
-	Probability of Corrosion Initiation 30% 70%						/	
	gor 10%	/						
	0%							
	0	10 20	30	40 50	60 70	80 90	100	
				Age, year	5			

average

Distribution

	(10% probability)			
Threshold/Mix ID	CTRL	SF-8	HP-20	
Given Threshold	15	83	>110	
WJE CASLE	16	79	>110	
%Change	+7%	-5%	-	

Chloride Threshold (ppm)

lower bound

upper bound

Page 32

stand. dev.

Conclusions

Black bars

		Initiation time, yr. (10% probability)			
Element/Mix ID	CTRL	SF-8	HP-20		
Bridge Deck - Deicers	16	73	>110		
Pile-Submerged	15	83	>110		
Wall-Splash	13	56	>110		
Adjusting aging factor	or				
Literature (Life 365)	14	54	60		
Adjusting Threshold					
WJE CASLE	16	79	>110		

Enhanced bars

	Initiation time, yr. (10% probability)			
Element/Mix ID	CTRL	SF-8	HP-20	
Bridge Deck - Deicers	48	>110	>110	
Pile-Submerged	41	>110	>110	
Wall-Splash	28	>110	>110	
Adjusting aging factor				
Literature (Life 365)	47	>110	>110	

Representative and accurate characterization of input distributions is vital