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o Our goal is to understand and develop 
physics-based guidelines for the rational 
design of nanostructured materials.

o Our tools are multiscale simulation 
techniques, theoretical models, and 
data-driven approaches.
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A bit of background on me

o The team:

“All models are wrong, but some are useful”o Our guiding principle:



Messy systems are in focus at the 
CompNanoLab

Glasses High Entropy Alloys (HEAs)
(configurational disorder)(structural and 

dynamical disorder)

Bacterial Biofilms
(morphological and phenotypic 

heterogeneity)



The significance of calcium 
aluminosilicate (CAS) glasses

o Substituting Portland cement with 
supplementary cementitious materials (SCMs) 
contributes to the mitigation of carbon emissions.

o The reactive phases of SCMs 
consist primarily of CAS glasses.

o Understanding the relationships between composition, 
structure, and reactivity in CAS glasses is essential for 
understanding current SCMs and identifying future ones. 
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Experimental reactivity of CAS glasses

CompositionReactivity

Stoichiometric descriptors do not fully capture the 
long-term heat release or the reaction kinetics.

modified R3 test

Subhashree 
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Hydration is a complicated process 
to simulate from first principles

Dissolution Precipitation & Growth

CAS glass e.g., C-A-S-H
heat release

Diffusion



Multiscale Modeling of Dissolution
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o realize an event 
at random

o assign a rate to each possible event
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computational 
sand

Studying bridge dissociations using 
AIMD-MetaD simulations

AIMD in a nutshell

𝐻Ψ = 𝑈Ψ

𝐟 = −∇𝑈 𝐫

Metadynamics in a nutshell

OHOH

H2O

Free 
energy 𝐸𝑎

If 𝐸𝑎 ≫ 𝑘𝐵T the transition is unlikely to 
occur during the timespan of a simulation.

𝐸𝑎

1.5 nm



The reaction mechanism of 
Si-O-X bridge dissociation

Reactants ProductsIntermediate

Michalske-Freiman

Our simulations

Meili 
Liu

o 5-fold coordinated with a near-trigonal bipyramidal geometry intermediate.

(hypothesized since 1983) 

(under review)

o The bridge opposite to the coordinated nucleophile dissociates. 

o The proton from the coordinated nucleophile transfers to bulk water.

nucleophilic substitution reaction



The activation energy depends on the 
bridge coordination of Si

Si Ea 
[ Τkcal mol]

𝑄3 19.3

𝑄2 16.9

𝑄1 13

o The highest the bridge coordination, 
the higher the energy required to 
reach the intermediate state.

o For 𝑄1 and 𝑄2 the intermediate state 
becomes the transition state.

Rate 
limiting 
step



Another part of the puzzle: the 
chemistry-structure relation

o Access to ALL structural information: o We can represent the 
atomistic structures as 
graphs:



Small compositional changes can have 
drastic effects on the glass structure

Ring Size Analysis
Fraction of nodes in 

largest cluster



Wrapping up: connecting simulations 
to experiments

Dissolution Kinetics

Composition

Activation energies 
of bridge dissociation
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Pitting Playing to the strengths of 
simulations and experiments

EXPERIMENTS SIMULATIONS (bottom-up)

o Excel at capturing 
the full complexity 
of a system.

o Offer the advantage of 
decoupling effects, as the 
system and its environment 
can be precisely controlled. 

o Effortlessly cover 
macroscopic time 
and length scales.

o Readily provide atomistic 
and molecular resolution.

o Simulations shine in 
elucidating underlying 
mechanisms, addressing 
how things happen.

o Experiments excel in 
providing quantitative 
assessments, revealing 
how much.
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Thank you!

“A computer lets you make 
more mistakes faster than 

any invention in human 
history – with the possible 
exceptions of handguns 

and tequila.”

Mitch Ratliffe

And remember…
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